Матрицы и определители
Понятие матрицы, прямоугольная матрица размера m x n - совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Численная характеристика квадратной матрицы - ее определитель. Действия над матрицами, ранг матрицы.
Подобные документы
- 101. Волновые поля, возбуждаемые гармоническим источником, движущимся по поверхности изотропного слоя
Символ матрицы Грина изотропного слоя для гармонического источника в подвижной системе координат. Интегральное представление решения задачи для гармонического поверхностного подвижного источника. Численные результаты для плоской задачи режима движения.
дипломная работа, добавлен 30.12.2014 Понятия теории графов. Понятия смежности, инцидентности и степени. Маршруты и пути. Матрицы смежности и инцедентности. Алгоритм поиска минимального пути в ненагруженном ориентированном орграфе на любом языке программирования, алгоритм фронта волны.
курсовая работа, добавлен 28.04.2011Понятие и матричное представление графов. Ориентированные и неориентированные графы. Опеределение матрицы смежности. Маршруты, цепи, циклы и их свойства. Метрические характеристики графа. Применение теории графов в различных областях науки и техники.
курсовая работа, добавлен 21.02.2009Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.
контрольная работа, добавлен 05.04.2015- 105. Исследование графов
Проверка справедливости тождеств или включений с использованием алгебры множеств и диаграмм Эйлера-Венна. Изображение графа и матрицы отношения, обладающего свойствами рефлексивности, транзитивности и антисиммеричности. Изучение неориентированного графа.
контрольная работа, добавлен 05.05.2013 Способы решения системы линейных алгебраических уравнений: по правилу Крамера, методом матричным и Жордана-Гаусса. Анализ решения задачи методом искусственного базиса. Характеристика основной матрицы, составленной из коэффициентов системы при переменных.
контрольная работа, добавлен 16.02.2012Определители второго и третьего порядков, свойства определителей. Два способа вычисления определителя третьего порядка. Теорема разложения. Теорема Крамера, которая дает практический способ решения систем линейных уравнений используя определители.
лекция, добавлен 02.06.2008Анализ и обработка статистического материала выборок Х1, Х2, Х3. Вычисление статистической дисперсии и стандарта случайной величины. Определение линейной корреляционной зависимости нормального распределения двух случайных величин, матрицы вероятностей.
контрольная работа, добавлен 25.10.2009Теория определителей в трудах П. Лапласа, О. Коши и К. Якоби. Определители второго порядка и системы двух линейных уравнений с двумя неизвестными. Определители третьего порядка и свойства определителей. Решение системы уравнений по правилу Крамера.
презентация, добавлен 31.10.2016Исследование зависимости погрешности решения от погрешностей правой части системы. Определение корня уравнения с заданной точностью. Вычисление точностных оценок методов по координатам. Сплайн интерполяция и решение дифференциального уравнения.
контрольная работа, добавлен 26.04.2011Формирование линеаризованного узлового уравнения разработка и транспонированной матрицы, сопротивлений ветвей и узловых проводимостей. Методика и этапы решения системы линеаризованных узловых уравнений методом Зейделя, анализ полученных результатов.
задача, добавлен 10.08.2013Элементы линейной алгебры. Виды матриц и операции над ними. Свойства определителей матрицы и их вычисление. Решение систем линейных уравнений в матричной форме, по формулам Крамера и методу Гаусса. Элементы дифференциального и интегрального исчислений.
учебное пособие, добавлен 06.11.2011Векторы на плоскости и в пространстве. Обыкновенное дифференциальное уравнение. Необходимые формулы для решения задач о касательной. Метод наименьших квадратов. Необходимые определения и формулы для вычисления интегралов. Производные элементарных функций.
курс лекций, добавлен 21.04.2009Изучение формул Крамера и Гаусса для решения систем уравнений. Использование метода обратной матрицы. Составление уравнения медианы и высоты треугольника. Нахождение пределов выражений и производных заданных функций. Определение экстремумов функции.
контрольная работа, добавлен 15.01.2014Характеристика и использование итерационных методов для решения систем алгебраических уравнений, способы формирования уравнений. Методы последовательных приближений, Гаусса-Зейделя, обращения и триангуляции матрицы, Халецкого, квадратного корня.
реферат, добавлен 15.08.2009Основные сведения, необходимые при решении задач на собственные значения. Итерационные методы. Определение собственных значений методами преобразований подобия. Определение собственных значений симметричной трехдиагональной матрицы.
реферат, добавлен 19.05.2006Исследование и подбор матрицы, удовлетворяющей условиям заданного уравнения. Разложение функции по формуле Тейлора в окрестности точки, расчет коэффициентов. Формирование уравнения гиперболы, имеющего заданные координаты фокусов. Расчет корней уравнения.
контрольная работа, добавлен 16.04.2016Особенности решения обыкновенного линейного неоднородного дифференциального уравнения второго порядка с заданными граничными условиями методом конечной разности. Составление трехдиагональной матрицы. Реализация решения в программе Microsoft Office Excel.
курсовая работа, добавлен 23.12.2013Свойства операций над множествами. Формулы алгебры высказываний. Функции алгебры логики. Существенные и фиктивные переменные. Проверка правильности рассуждений. Алгебра высказываний и релейно-контактные схемы. Способы задания графа. Матрицы для графов.
учебное пособие, добавлен 27.10.2013Описание методов решения системы линейного алгебраического уравнения: обратной матрицы, Якоби, Гаусса-Зейделя. Постановка и решение задачи интерполяции. Подбор полиномиальной зависимости методом наименьших квадратов. Особенности метода релаксации.
лабораторная работа, добавлен 06.12.2011Основные этапы и принципы решения системы линейных уравнений с помощью метода Крамара, обратной матрицы. Разрешение матричного уравнения. Вычисление определителя. Расчет параметров пирамиды: длины ребра, площади грани, объема, а также уравнения грани.
контрольная работа, добавлен 06.09.2015- 122. Цепи Маркова
Цепь Маркова как простой случай последовательности случайных событий, области ее применения. Теорема о предельных вероятностях в цепи Маркова, формула равенства Маркова. Примеры для типичной и однородной цепи Маркова, для нахождения матрицы перехода.
курсовая работа, добавлен 20.04.2011 Решение системы линейных уравнений методами Крамера, Гаусса (посредством преобразований, не изменяющих множество решений системы), матричным (нахождением обратной матрицы). Вероятность оценки события. Определение предельных вероятностей состояний системы.
контрольная работа, добавлен 26.02.2012Пример вычисления определителя второго порядка в общем виде. Свойства векторного произведения и их доказательства. Пример применения правила Крамера для решения систем из n уравнений с n неизвестными. Векторное произведение векторов заданных проекциями.
контрольная работа, добавлен 14.03.2009Особенности применения функций Ляпунова для исследования устойчивости различных дифференциальных уравнений и систем. Алгоритм и листинг программы определения устойчивости матрицы на основе использования метода Раусса-Гурвица в среде моделирования Matlab.
реферат, добавлен 23.10.2014