Основные принципы решения транспортной задачи
Постановка задачи о коммивояжере. Нахождение оптимального решения с применением метода ветвей и границ. Основной принцип этого метода, порядок его применения. Использование метода верхних оценок в процедуре построения дерева возможных вариантов.
Подобные документы
Анализ прямого метода Данилевского нахождения собственных векторов практически любой матрицы. Возможность применения этого метода в современном программировании, и так же области науки, где пользоваться методом Данилевского было бы очень удобно.
курсовая работа, добавлен 13.05.2008Построение базовой аналитической модели оптимизации распределения затрат на рекламу и ее времени между радио и телевидением. Разработка приложения для решения оптимизационной задачи с помощью симплекс-метода. Испытание модели на чувствительность.
курсовая работа, добавлен 11.02.2014Задачи, решаемые методом динамического программирования. Основные этапы нахождения деревянного алгоритма решения задачи. Выполнение алгоритма Прима. Построение Эйлерового цикла. Решение задач средствами Excel. Алгоритм основной программы - Derevo.
курсовая работа, добавлен 04.04.2015Решение задачи средствами Паскаль и блок-схемы выполненных процедур, составление программы. Результаты решения задачи по перевозке грузов. выполнение задачи средствами MS Excel, создание таблиц. Порядок и особенности решения задачи в среде MathCAD.
курсовая работа, добавлен 27.02.2011Стандартная и каноническая форма записи задачи линейного программирования. Ее запись на листе MS Excel. Математическая модель транспортной задачи, состоящей в определении оптимального плана перевозок некоторого однородного груза, результаты ее решения.
контрольная работа, добавлен 25.01.2016Метод численного интегрирования. Использование метода половинного деления для решения нелинейного уравнения. Определение отрезка неопределенности для метода половинного деления. Получение формулы Симпсона. Уменьшение шага интегрирования и погрешности.
курсовая работа, добавлен 21.05.2013Разработка алгоритма аппроксимации данных методом наименьших квадратов. Средства реализации, среда программирования Delphi. Физическая модель. Алгоритм решения. Графическое представление результатов. Коэффициенты полинома (обратный ход метода Гаусса).
курсовая работа, добавлен 09.02.2015Подбор параметров линейной функции. Вычисление значения функции в заданных промежуточных точках с использованием математических пакетов. Исследование математической модели решения задачи. Составление программы для вычисления коэффициента корреляции.
курсовая работа, добавлен 21.10.2014Определение понятия алгоритмов, принципы их решения людьми и всевозможными техническими устройствами. Применение компьютера для решения задач. Особенности использования метода последовательного укрупнения при создании шахматной доски по алгоритму.
презентация, добавлен 06.02.2012Алгоритм симплекс-метода. Задача на определение числа и состава базисных и свободных переменных, построение математической модели. Каноническая задача линейного программирования. Графический метод решения задачи. Разработки математической модели в Excel.
курсовая работа, добавлен 18.05.2013Описание ДСМ-метода автоматического порождения гипотез. Исследование результатов влияния компонентов ДСМ-метода на качество определения тональности текстов. Алгоритм поиска пересечений. N-кратный скользящий контроль. Программная реализация ДСМ-метода.
курсовая работа, добавлен 12.01.2014Критерий эффективности и функции в системе ограничений. Общая постановка задачи линейного программирования. Составление математической модели задачи. Алгоритмы решения задачи симплексным методом. Построение начального опорного решения методом Гаусса.
курсовая работа, добавлен 01.06.2009Обзор алгоритмов методов решения задач линейного программирования. Разработка алгоритма табличного симплекс-метода. Составление плана производства, при котором будет достигнута максимальная прибыль при продажах. Построение математической модели задачи.
курсовая работа, добавлен 21.11.2013Реализация алгоритма метода сопряженных градиентов с матрично-векторным произведением по строкам в модели обмена сообщениями на языке программирования С++ с применением MPI для нахождения приближенного решения системы линейных алгебраических уравнений.
курсовая работа, добавлен 01.12.2010Пoнятие, назначение и метoдoлoгия аппpoксимации как математического метода. Постановка задачи oб интеpпoляции функций, сущность пеpвoй интеpпoляциoннoй фopмулы Ньютoна. Пpoгpаммиpoвание pешения задачи в среде Delphy. Пoдбop неoбхoдимых pесуpсoв.
курсовая работа, добавлен 30.05.2012Применение методов линейного программирования для решения оптимизационных задач. Основные понятия линейного программирования, свойства транспортной задачи и теоремы, применяемые для ее решения. Построение первичного опорного плана и системы потенциалов.
курсовая работа, добавлен 17.11.2011Программные продукты для решения задачи построения оптимального маршрута. Выбор аппаратных и программных средств для построения маршрута обхода пациентов. Математическая модель муравьиного алгоритма: состав, структура, тестирование, отладка, реализация.
дипломная работа, добавлен 03.12.2017Описание алгоритма создания программы для решения алгебраических или трансцендентных уравнений с помощью численного метода Бернулли. Нахождение значений корней алгебраического уравнения с заданными параметрами точности. Листинг программы на языке java.
контрольная работа, добавлен 19.06.2015Математический алгоритм вычисления корней нелинейного уравнения и его решение методом касательных. Особенности программной реализации решения таких уравнений. Процедура подготовки и решения задачи на ЭВМ, характеристика алгоритма и структуры программы.
курсовая работа, добавлен 02.06.2012Характеристики вычислительного кластера для тестирования программы, описание библиотек MPI и MKL. Общий вид системы линейных алгебраических уравнений. Использование метода GMRES для построения параллельного переобуславливателя. Сетевой закон Амдала.
курсовая работа, добавлен 14.11.2012Обыкновенное дифференциальное уравнение первого порядка. Задача Коши, суть метода Рунге-Кутта. Выбор среды разработки. Программная реализация метода Рунге-Кутта 4-го порядка. Определение порядка точности метода. Применение языка программирования C++.
курсовая работа, добавлен 16.05.2016Способы использования математических методов для решения задач и выбор оптимального алгоритма для расстановки переносов в словах по правилам русской орфографии. Сущность, принципы и описание метода решения "каретка". Листинг и тестирование программы.
курсовая работа, добавлен 28.07.2009Применение численного метода решения систем линейных алгебраических уравнений, используемых в прикладных задачах. Составление на базе метода матрицы Гаусса вычислительной схемы алгоритма и разработка интерфейса программы на алгоритмическом языке.
курсовая работа, добавлен 19.06.2023Модель динамического программирования для решения задач оптимального распределения ресурсов. Принцип оптимальности, уравнение Беллмана. Двумерная и дискретная динамическая модель. Значение метода в решении прикладных задач различных областей науки.
курсовая работа, добавлен 01.10.2009Математическое описание численных методов решения уравнения, построение графика функции. Cтруктурная схема алгоритма с использованием метода дихотомии. Использование численных методов решения дифференциальных уравнений, составление листинга программы.
курсовая работа, добавлен 19.12.2009