Система массового обслуживания с ограниченным временем ожидания

Понятие системы массового обслуживания, ее сущность и особенности. Теория массового обслуживания как один из разделов теории вероятностей, рассматриваемые вопросы. Понятие и характеристика случайного процесса, его виды и модели. Обслуживание с ожиданием.

Подобные документы

  • Понятия теории вероятностей и математической статистики, применение их на практике. Определение случайной величины. Виды и примеры случайных величин. Закон распределения дискретной случайной величины. Законы распределения непрерывной случайной величины.

    реферат, добавлен 25.10.2015

  • Система электроснабжения, ее описание, характеристика и сущность. Схема системы электроснабжения. Описание ее элементов и деталей. Расчет надежности системы и ее частей. Виды методов расчетов, их особенности. Метод статистических испытаний, его сущность.

    курсовая работа, добавлен 05.03.2009

  • Система кривых Пирсона. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Примеры нахождения кривых распределения вероятностей и программное обеспечение.

    дипломная работа, добавлен 13.03.2003

  • Длина интервала группирования. Гистограмма относительных частот. Кусочно-постоянная функция. Среднеквадратичное отклонение оценки математического ожидания случайной величины. Коэффициент корреляции. Границы доверительного интервала для ожидания.

    курсовая работа, добавлен 18.02.2009

  • Статистическое, аксиоматическое и классическое определение вероятности. Дискретные случайные величины. Предельные теоремы Лапласа и Пуассона. Функция распределения вероятностей для многомерных случайных величин. Формула Байеса. Точечная оценка дисперсии.

    шпаргалка, добавлен 04.05.2015

  • Вероятность и ее общее определение. Теоремы сложения и умножения вероятностей. Дискретные случайные величины и их числовые характеристики. Закон больших чисел. Статистическое распределение выборки. Элементы корреляционного и регрессионного анализа.

    курс лекций, добавлен 13.06.2015

  • Краткий биографический очерк жизни и деятельности Георга Кантора и Шарля Мерэ. История создания теории действительного числа, ее математическая сущность и характеристика. Определение отношения порядка. Понятие замкнутости множества вещественных чисел.

    презентация, добавлен 11.06.2011

  • Математическая теория чисел. Понятие систем счисления. Применения двоичной системы счисления. Компьютерная техника и информационные технологии. Алфавитное неравномерное двоичное кодирование. Достоинства и недостатки двоичной системы счисления.

    реферат, добавлен 25.12.2014

  • Характеристика основных правил и соединений комбинаторики. Классическая схема или схема случаев - испытание, при котором число исходов конечно и все из них равновозможные. Виды случайных событий. Дифференциальная функция распределения случайной величины.

    учебное пособие, добавлен 24.03.2011

  • Понятие и сущность многомерной случайной величины, ее отличие от одномерной и применение для решения статистических задач. Особенности условной вероятности, расчет и определение суммы всех вероятностей. Математический закон распределения событий.

    презентация, добавлен 01.11.2013

  • Программа курса, основные понятия и формулы теории вероятностей, их обоснование и значение. Место и роль математической статистики в дисциплине. Примеры и разъяснения по решению самых распространенных задач по различным темам данных учебных дисциплин.

    методичка, добавлен 15.01.2010

  • Практическое применение теории вероятностей. Методы решения задач, в которых один и тот же опыт повторяется неоднократно. Формула Бернулли для описания вероятности наступления события. Биномиальное распределение и формулировка теоремы о повторении опытов.

    презентация, добавлен 01.11.2013

  • Пьер-Симон Лаплас - выдающийся французский математик, физик и астроном, один из создателей теории вероятностей. Уравнение Лапласа в двумерном пространстве. Способы трехмерного уравнения Лапласа. Особенности решения задачи Дирихле в круге методом Фурье.

    курсовая работа, добавлен 14.06.2011

  • Основные понятия, которые касаются центральной предельной теоремы для независимых одинаково распределенных случайных величин и проверки статистических гипотез. Анализ сходимости последовательностей случайных величин и вероятностных распределений.

    курсовая работа, добавлен 13.11.2012

  • Случайный процесс в теории вероятностей. Математическое ожидание и дисперсия. Многомерные законы распределения. Вероятностные характеристики "входной" и "выходной" функций. Сечение случайной функции. Совокупность случайных величин, зависящих от параметра.

    курсовая работа, добавлен 23.12.2012

  • Классическая формула для вероятности события, отношение благоприятного числа исходов опыта к общему числу всех равновозможных несовместных исходов. Понятие непрерывной и дискретной случайной величины, их числовые характеристики и законы распределения.

    презентация, добавлен 19.07.2015

  • Предельные теоремы теории вероятностей. Сходимость последовательностей случайных величин и вероятностных распределений. Метод характеристических функций. Закон больших чисел. Особенности проверки статистических гипотез (критерия согласия w2 Мизеса).

    курсовая работа, добавлен 27.01.2012

  • Пространство элементарных событий, математическое ожидание. Функции распределения и плотности распределения составляющих системы случайных величин. Числовые характеристики системы. Условия нормировки плотности системы случайных непрерывных величин.

    практическая работа, добавлен 15.06.2012

  • Теория малых упругопластических деформаций. Метод последовательных приближений. Метод упругих решений. Подход, основанный на методе дополнительных нагрузок. Теория пластического течения. Упругость объемной деформации. Критерий упрочнения Д. Дракера.

    презентация, добавлен 17.07.2015

  • Нахождение вероятности события, используя формулу Бернулли. Составление закона распределения случайной величины и уравнения регрессии. Расчет математического ожидания и дисперсии, сравнение эмпирических и теоретических частот, используя критерий Пирсона.

    контрольная работа, добавлен 29.04.2012

  • Теория вероятности как наука убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Математические доказательства теории. Аксиоматика теории вероятности: определения, вероятность пространства, условная вероятность.

    лекция, добавлен 02.04.2008

  • Показатели безотказности как показатели надежности невосстанавливаемых объектов. Классическое и геометрическое определение вероятности. Частота случайного события и "статистическое определение" вероятности. Теоремы сложения и умножения вероятностей.

    курсовая работа, добавлен 18.11.2011

  • Точечное оценивание основных числовых характеристик, функции и плотности распределения компонент многомерного случайного вектора. Статистическая проверка характера распределения. Особенности корреляционного анализа признаков этой математической категории.

    курсовая работа, добавлен 01.10.2013

  • Байесовские алгоритмы оценивания (фильтр Калмана). Постановка задачи оценивания для линейных моделей динамической системы и измерений. Запись модели эволюции и модели измерения в матричном виде. Составление системы уравнений, описывающей эволюцию системы.

    курсовая работа, добавлен 14.06.2011

  • Понятие интеграла Стилтьеса. Общие условия существования интеграла Стилтьеса, классы случаев его существования и предельный переход под его знаком. Приведение интеграла Стилтьеса к интегралу Римана. Применение в теории вероятностей и квантовой механике.

    дипломная работа, добавлен 20.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.