Метод ортогонализации и метод сопряженных градиентов

Методы решения систем линейных алгебраических уравнений, их характеристика и отличительные черты, особенности и сферы применения. Структура метода ортогонализации и метода сопряженных градиентов, их разновидности и условия, этапы практической реализации.

Подобные документы

  • Трансцендентное уравнение: понятие и характеристика. Метод половинного деления (дихотомии), его сущность. Применение метода простой итерации для решения уравнения. Геометрический смысл метода Ньютона. Уравнение хорды и касательной, проходящей через точку.

    курсовая работа, добавлен 28.06.2013

  • Основные правила решения системы заданных уравнений методом Гаусса с минимизацией невязки и методом простых итераций. Понятие исходной матрицы; нахождение определителя для матрицы коэффициентов. Пример составления блок-схемы метода минимизации невязок.

    лабораторная работа, добавлен 24.09.2014

  • Влияние способа перехода от системы F(x)=x к системе x=ф(x) на точность полученного решения. Общее описание программного обеспечения и алгоритмов. Функциональное назначение программы. Программный модуль metod1.m и metod2.m. Описание тестовых задач.

    курсовая работа, добавлен 27.04.2011

  • Разработка программного обеспечения для решения нелинейных систем алгебраических уравнений методом дифференцирования по параметру и исследование влияние метода интегрирования на точность получаемого решения. Построение графиков переходных процессов.

    курсовая работа, добавлен 26.04.2011

  • Решение нелинейных уравнений. Отделения корней уравнения графически. Метод хорд и Ньютона. Система линейных уравнений, прямые и итерационные методы решения. Нормы векторов и матриц. Метод простых итераций, его модификация. Понятие про критерий Сильвестра.

    курсовая работа, добавлен 15.08.2012

  • Смысл метода Ньютона для решения нелинейных уравнений. Доказательства его модификаций: секущих, хорд, ложного положения, Стеффенсена, уточненного для случая кратного корня, для системы двух уравнений. Оценка качества метода по числу необходимых итераций.

    реферат, добавлен 07.04.2015

  • Приближенные значения корней. Метод дихотомии (или деление отрезка пополам), простой итерации и Ньютона. Метод деления отрезка пополам для решения уравнения. Исследование сходимости метода Ньютона. Построение нескольких последовательных приближений.

    лабораторная работа, добавлен 15.07.2009

  • Примеры операций над матрицами. Ранг матрицы. Обратная матрица. Системы линейных уравнений. Метод Гаусса для решения систем линейных уравнений, две его составляющие: прямой и обратный ходы. Решение системы по формулам Крамера. Построение параболы.

    контрольная работа, добавлен 05.02.2009

  • Линейное программирование как наиболее разработанный и широко применяемый раздел математического программирования. Понятие и содержание симплекс-метода, особенности и сферы его применения, порядок и анализ решения линейных уравнений данным методом.

    курсовая работа, добавлен 09.04.2013

  • Изучение нестандартных методов решения задач по математике, имеющих широкое распространение. Анализ метода функциональной, тригонометрической подстановки, методов, основанных на применении численных неравенств. Решение симметрических систем уравнений.

    курсовая работа, добавлен 14.02.2010

  • Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.

    контрольная работа, добавлен 28.02.2011

  • Методика отделения корней от заданных уравнений графическим методом и табулированием, а также половинным делением. Содержание, а также оценка преимуществ и недостатков использования метода итерации и касательных, условия их практического применения.

    лабораторная работа, добавлен 24.09.2014

  • Понятие Диофантовых уравнений, их сущность и особенности, методика и этапы решения. Великая теорема Ферма и порядок ее доказательства. Алгоритм решения иррациональных уравнений. Метод поиска Пифагоровых троек. особенности решения уравнения Каталана.

    учебное пособие, добавлен 23.04.2009

  • Вид в матричной форме, определитель матрицы, алгебраического дополнения и всех элементов матрицы, транспоная матрица. Метод Крамера, правило Крамера — способ решения квадратных систем линейных алгебраических уравнений с определителем основной матрицы.

    задача, добавлен 08.11.2010

  • Общая постановка задачи решения обыкновенных дифференциальных уравнений, особенности использования метода Адамса в данном процессе. Решение системы обыкновенных дифференциальных уравнений методом Адамса и точным методом, сравнение полученных результатов.

    курсовая работа, добавлен 27.04.2011

  • Описание общих принципов метода сеток, его применение к решению параболических уравнений. Исследование разрешимости получаемой системы разностных уравнений. Разработка программы для численного решения поставленной задачи, выполнение тестовых расчетов.

    курсовая работа, добавлен 12.10.2009

  • Исследование сущности и сфер применения метода итераций. Нелинейные уравнения. Разработка вычислительный алгоритм метода итераций. Геометрический смысл. Составление программы решения систем нелинейных уравнений методом итераций в среде Turbo Pascal.

    реферат, добавлен 11.04.2014

  • Симплексный метод как универсальное решение задач линейного программирования. Применение метода Жордана-Гаусса для системы линейных уравнений в канонической форме. Опорное решение системы ограничений. Критерий оптимальности. Задача канонической формы.

    презентация, добавлен 11.04.2013

  • Анализ методов решения систем нелинейных уравнений. Простая итерация, преобразование Эйткена, метод Ньютона и его модификации, квазиньютоновские и другие итерационные методы решения. Реализация итерационных методов с помощью математического пакета Maple.

    курсовая работа, добавлен 22.08.2010

  • Метод замены переменной при решении задач. Тригонометрическая подстановка. Решение уравнений. Решение систем. Доказательство неравенств. Преподавание темы "Применение тригонометрической подстановки для решения алгебраических задач".

    дипломная работа, добавлен 08.08.2007

  • Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.

    реферат, добавлен 10.11.2009

  • Особенности решения задач Диофантовой "Арифметики", которые решаются с помощью алгебраических уравнений или системы алгебраических уравнений с целыми коэффициентами. Характеристика великой теоремы Ферма, анализ и методы приминения алгоритма Евклида.

    реферат, добавлен 03.03.2010

  • Определение понятий "хорда", "пропорциональность", "приращение функции". Доказательство теорем Ферма, Ролля и Лагранжа. Особенности и условия применения метода хорд при решении уравнений разного порядка. Ознакомление с правилом пропорциональных частей.

    реферат, добавлен 25.05.2014

  • Обобщенные решения линейных дифференциальных уравнений. Основные примеры построения фундаментальных решений линейных дифференциальных операторов с постоянными коэффициентами, метод преобразования Фурье. Преимущества использования методов спуска.

    курсовая работа, добавлен 10.04.2014

  • Методы численного интегрирования, основанные на том, что интеграл представляется в виде предела суммы площадей. Геометрическое представление метода Гаусса с двумя ординатами. Численные примеры и сравнение методов. Решение систем алгебраических уравнений.

    курсовая работа, добавлен 11.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.