Ітераційні методи розв’язування систем лінійних рівнянь
Метод простої ітерації Якобі і метод Зейделя. Необхідна і достатня умова збіжності методу простої ітерації для розв’язання системи лінейних рівнянь. Оцінка похибки. Діагональне домінування матриці як умова збіжності ітерації. Основні переваги цих методів.
Подобные документы
Теореми про близькість розв'язку вихідної і усередненої системи на скінченому на нескінченому проміжках. Формулювання теорем про близькість розв'язків системи з повільними та швидкими змінними. Загальний прийом асимптотичного інтегрування системи.
курсовая работа, добавлен 03.01.2014Складання плану виробництва при максимальному прибутку. Введення додаткових (фіктивних) змінних, які перетворюють нерівності на рівності. Розв’язування задачі лінійного програмування графічним методом та економічна інтерпретація отриманого розв’язку.
контрольная работа, добавлен 20.11.2009Методика введення основних понять теми, розв’язування задач векторним методом. Вибір тем, які легко викладаються з використанням векторного метода. Доведення теорем векторним методом. Виділення вмінь, необхідних для успішного оволодіння методом.
курсовая работа, добавлен 19.02.2014Розв'язання задач з теорії множин та математичної логіки. Визначення основних характеристик графа г (Х,W). Розклад функцій дискретного аргументу в ряди по базисним функціям. Побудова та доведення діаграми Ейлера-Вена. Побудова матриці інцидентності графа.
курсовая работа, добавлен 20.04.2012- 105. Дослідження диференціальних моделей з непарною кількістю рівнянь з відхиленням мішаного характеру
Дослідження диференціального рівняння непарного порядку і деяких систем з непарною кількістю рівнянь на нескінченному проміжку. Побудова диференціальної моделі, що описується диференціальним рівнянням, та дослідження її на скінченому проміжку часу.
дипломная работа, добавлен 24.12.2013 Форми організації навчально-методологічної діяльності. Формалізування предметного способу дій. Аналіз програмних вимог. Властивості неперервних функцій. Ірраціональні та раціональні нерівності. Розв'язування квадратичних нерівностей методом інтервалів.
курсовая работа, добавлен 07.01.2016Решение задач вычислительными методами. Решение нелинейных уравнений, систем линейных алгебраических уравнений (метод исключения Гаусса, простой итерации Якоби, метод Зейделя). Приближение функций. Численное интегрирование функций одной переменной.
учебное пособие, добавлен 08.02.2010Властивості числових характеристик системи випадкових величин. Обчислення кореляційного моменту. Ведення комплексної випадкової величини, характеристичні функції. Види збіжності випадкових величин. Приклади доказів граничних теорем теорії ймовірностей.
реферат, добавлен 12.03.2011Означення та властивості перетворення Лапласа, приклади розв'язання базових задач. Встановлення відповідності між двома точками за допомогою оператора. Застосування операційного методу математичного аналізу, проведення дій над логарифмами та числами.
реферат, добавлен 20.12.2010Вивчення існування періодичних рішень диференціальних систем і рівнянь за допомогою властивостей симетричності (парність, непарність). Основні теорії вектор-функцій, що відбивають. Побудова множини систем, парна частина загального рішення яких постійна.
курсовая работа, добавлен 20.01.2011Поняття лінійного оператора, алгебраїчні операції над ним та базові властивості. Лінійні перетворення (оператори) із простору V в W. Матриця лінійного оператора. Перетворення матриці оператора при заміні базису. власні значення і власні вектори.
курсовая работа, добавлен 25.03.2011Теорема Куна-Такера. Побудування функції Лагранжа. Задача квадратичного програмування. Узагальнення симплексного метода лінійного програмування згідно методу Біла. Правила переходу від однієї таблиці до іншої. Система обмежень у допустимої області.
курсовая работа, добавлен 08.05.2014- 113. Інтегральне числення
Вивчення елементарних функцій, інтеграли від яких не є елементарними функціями, тобто вони не обчислюються в скінченному вигляді або не 6еруться. Наближені методи обчислення визначених інтегралів. Дослідження невласних інтегралів та ознаки їх збіжності.
реферат, добавлен 18.07.2010 Формулювання задачі мінімізації. Мінімум функції однієї та багатьох змінних. Прямі методи одновимірної безумовної оптимізації: метод дихотомії і метод золотого перерізу. Метод покоординатного циклічного спуску. Метод правильного і деформованого симплексу.
курсовая работа, добавлен 11.08.2012- 115. Прогресії та середні
Сутність гармонічної, квадратичної, логарифмічної прогресій. Аналіз методів доведень алгебраїчних нерівностей за допомогою прогресій. Розв'язання задач на дослідження властивостей середнього степеневого для заданих числових послідовностей та нерівностей.
курсовая работа, добавлен 26.04.2012 Процес розповсюдження тепла в стержні методом розділення змiнних. Застосування методу Фур’є розділення змінних для розв’язання поставленої нестацiонарної задачі теплопровiдностi. Теорема про нагрітий стержень з нульовими температурами в кінцевих точках.
курсовая работа, добавлен 10.04.2016Розгляд властивостей абсолютних величин і теорем про рівносильні перетворення рівнянь і нерівностей, що містять знак модуля. Формулювання маловідомих тверджень, що істотно спрощують традиційні алгоритмічні способи рішення шкільних, конкурсних задач.
дипломная работа, добавлен 15.02.2011Розв'язок задач лінійного програмування симплексним методом, графічне вирішення системи нерівностей, запис двоїстої задачі: визначення прибутку, отриманого підприємством від реалізації виробів; загальних витрат, пов’язаних з транспортуванням продукції.
контрольная работа, добавлен 28.03.2011Таблиця основних інтегралів та знаходження невизначених інтегралів від елементарних функцій. Розкладання підінтегральної функції в лінійну комбінацію більш простих функцій. Метод підстановки або заміни змінної інтегрування. Метод інтегрування частинами.
реферат, добавлен 29.06.2011Вивчення властивостей підгрупи Фиттинга. Умова існування доповнень до окремих підгруп. Визначення нильпотентної довжини розв'язної групи. Доведення ізоморфності кінцевої нерозв'язної групи з нильпотентними додаваннями до непонадрозв'язних підгруп.
дипломная работа, добавлен 17.01.2011Криптографічні перетворення, що виконуються в групі точок ЕК. Проблема дискретного логарифму. Декілька методів, що використовуються для аналізу стійкості і проведення криптоаналізу. Опис та розв’язання логарифму методом Флойда, методом Полларда.
контрольная работа, добавлен 08.02.2011Максимуми і мінімуми в природі (оптика). Завдання на оптимізацію. Варіаційні методи розв’язання екстремальних задач. Найбільш відомі екстремальні задачі в геометрії: задача Дідони, Евкліда, Архімеда, Фаньяно, Ферма-Торрічеллі-Штейнера та Штейнера.
курсовая работа, добавлен 12.09.2014Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.
лекция, добавлен 02.06.2008Поняття і сутність нарисної геометрії. Геометричні фігури як формоутворюючі елементи простору. Розв'язання метричних задач шляхом заміни площин проекцій. Плоскопаралельне переміщення та обертання навколо ліній рівня. Косокутне допоміжне проектування.
контрольная работа, добавлен 03.02.2009Ознайомлення із формулюваннями задач на побудову; застосування методів геометричного місця точок, центральної та осьової симетрії, паралельного переносу та повороту для їх розв'язання. Правила побудови шуканих фігур за допомогою циркуля і лінійки.
курсовая работа, добавлен 04.12.2011