Інтерполяція сплайнами

Проблеми глобальної та локальної інтерполяції за Лагранжем і Ньютоном; коливна поведінка інтерполяційного многочлена; функції Рунге. Сплайн – група пов'язаних кубічних многочленів з неперервною першою і другою похідною, переваги сплайн-інтерполяції.

Подобные документы

  • Скорочені, тупикові диз'юнктивні нормальні форми. Алгоритм Квайна й Мак-Класки мінімізації булевої функції. Геометричний метод мінімізації булевої функції. Мінімізація булевої функції за допомогою карти Карно. Побудова оптимальних контактно-релейних схем.

    курсовая работа, добавлен 28.12.2010

  • Вивчення рівняння з однією невідомою довільного степеня та способів знаходження коренів таких рівнянь. Доведення основної теореми алгебри. Огляд способу Ньютона встановлення меж дійсних коренів алгебраїчних рівнянь. Відокремлення коренів методом Штурма.

    курсовая работа, добавлен 06.10.2012

  • Вычислительные методы линейной алгебры. Интерполяция функций. Интерполяционный многочлен Ньютона. Узлы интерполяции. Интерполяционный многочлен Лагранжа. Интерполяция сплайнами. Коэффициенты кубических сплайнов.

    лабораторная работа, добавлен 06.02.2004

  • Корені многочленів. Пошук коренів рівняння з достатнім ступенем точності. Важлива проблема механіки – теорія стійкості і з‘ясування умов, коли усі корені даного алгебраїчного рівняння мають від‘ємні дійсні частини. Число дійсних коренів. Правило Декарта.

    курсовая работа, добавлен 26.03.2009

  • В вычислительной математике существенную роль играет интерполяция функций. Формула Лагранжа. Интерполирование по схеме Эйткена. Интерполяционные формулы Ньютона для равноотстоящих узлов. Формула Ньютона с разделенными разностями. Интерполяция сплайнами.

    контрольная работа, добавлен 05.01.2011

  • Визначення гіпергеометричного ряду. Диференціальне рівняння для виродженої гіпергеометричної функції. Вироджена гіпергеометрична функція другого роду. Подання різних функцій через вироджені гіпергеометричні функції. Властивості гіпергеометричної функції.

    курсовая работа, добавлен 26.01.2011

  • Знаходження коефіцієнтів для рівнянь нелінійного виду та аналіз рівняння регресії. Визначення параметрів емпіричної формули. Метод найменших квадратів. Параболічна інтерполяція, метод Лагранжа. Лінійна кореляція між випадковими фізичними величинами.

    курсовая работа, добавлен 25.04.2014

  • Теория приближений как раздел математики, изучающий вопрос о возможности приближенного представления математических объектов. Построение интерполяционного многочлена. Приближение кусочно-полиномиальными функциями. Алгоритм программы и ее реализация.

    курсовая работа, добавлен 18.10.2015

  • Определение асимптотики решения спектральной задачи. Исследование процесса квантового усреднения. Характеристика особенностей использования когерентного преобразования. Расчет коэффициентов квадратного многочлена. Анализ вычисления интеграла из формул.

    контрольная работа, добавлен 23.08.2017

  • Теория высшей алгебры в решении задач элементарной математики. Программы для нахождения частного и остатка при делении многочленов, наибольшего общего делителя двух многочленов, производной многочлена; разложения многочленов на кратные множители.

    дипломная работа, добавлен 09.01.2009

  • Алгоритми переведення чисел з однієї позиційної системи числення в іншу. Перетворення і передавання інформації. Булеві функції змінних, їх мінімізація. Реалізація функцій алгебри логіки на дешифраторах. Синтез комбінаційних схем на базі мультиплексорів.

    курсовая работа, добавлен 02.09.2011

  • Особенности решения линейных и нелинейных уравнений. Характеристика и практическое применение и различных методов при решении уравнений. Сущность многочлена Лагранжа и обратного интерполирования. Сравнение численного дифференцирования и интегрирования.

    курсовая работа, добавлен 20.01.2010

  • Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).

    реферат, добавлен 06.03.2011

  • Суть модифицированного метода Эйлера. Определение интерполяционного многочлена. Выведение формулы трапеций из геометрических соображений. Применение для расчетов интерполированного полинома Ньютона. Составление блок-схемы алгоритма решения уравнений.

    курсовая работа, добавлен 14.02.2016

  • Моделирование как метод познания. Классификаций и характеристика моделей: вещественные, энергетические и информационные. Математическая модель "хищники-жертвы", ее сущность. Порядок проверки и корректировки модели. Решение уравнений методом Рунге-Кутта.

    методичка, добавлен 30.04.2014

  • Тождества, используемые для системы Жигалкина. Многочлен Жигалкина функции одной, двух и трех переменных. Содержание теоремы. Практический пример преобразования многочлена с помощью метода цепочки и неопределенных коэффициентов. Закон полного поглощения.

    контрольная работа, добавлен 06.08.2013

  • Определение корня первого и второго многочлена, вычисление предела функции. Применение правила Лопиталя (предел отношения функций равен пределу отношения их производных). Пример использования замечательного предела, который применяется в виде равенства.

    контрольная работа, добавлен 19.03.2015

  • Изучение полиномиальных уравнений и путей их решений. Доказательство теорем Безу и Штурма. Ознакомление с правилами использования формул Виета, математических методов Лобачевского, касательных и пропорциональных отрезков для определения корней многочлена.

    курсовая работа, добавлен 19.09.2011

  • Построение приближающей функции, используя исходные данные, с помощью методов Лагранжа, Ньютона и Эйткена (простая и упрощенная форма реализации). Алгоритм вычисления интерполяционного многочлена. Сравнение результатов реализации методов в среде Mathcad.

    курсовая работа, добавлен 30.04.2011

  • Многочлены Чебышева. Многочлены равномерных приближений. Экономизация степенных рядов. Свойства многочлена Чебышева. Интерполяция по Чебышевским узлам. Многочлены равномерных приближений. Теорема Вейерштрасса. Кусочно-квадратичная аппроксимация.

    курс лекций, добавлен 06.03.2009

  • Характеристика послідовності незалежних випробувань, застосування формул Бернуллі, Пусона, локальної та інтегральної теореми Лапласа. Аналіз моментів біноміального розподілу. Оцінка дисперсії. Математична теорія експерименту у техніко-економічних задачах.

    контрольная работа, добавлен 19.02.2010

  • Основные правила расчета значений дифференциального уравнения. Изучение выполнения оценки погрешности вычислений, осуществления аппроксимации решений. Разработка алгоритма и написание соответствующей программы. Построение интерполяционного многочлена.

    курсовая работа, добавлен 11.12.2013

  • Нахождение собственных значений и собственных векторов матриц. Нетривиальное решение однородной системы линейных алгебраических уравнений. Метод нахождения характеристического многочлена, предложенный А.М. Данилевским. Получение формы Жордано: form.exe.

    курсовая работа, добавлен 29.08.2010

  • Разложение многочлена на множители. Область допустимых значений уравнения как множество всех действительных чисел. Утверждения, полезные при решении уравнений. Примеры упражнений, связанных с понятием обратной функции, нестандартные методы решения.

    контрольная работа, добавлен 22.12.2011

  • Формула Бернуллі та її використання при невеликому числі випробувань. Застосування локальної формули Муавра-Лапласа при необмеженому зростанні числа випробувань, коли ймовірність настання події не занадто близька до нуля або одиниці. Формула Пуассона.

    курсовая работа, добавлен 21.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.