Нелинейная свободная система второго порядка

Системы дифференциальных уравнений первого порядка. Положение равновесия системы. Численный расчет линеаризованной системы уравнений. Определение асимптотической устойчивости состояния равновесия системы в соответствии с первым методом Ляпунова.

Подобные документы

  • Решение системы линейных уравнений методами Крамера, Гаусса (посредством преобразований, не изменяющих множество решений системы), матричным (нахождением обратной матрицы). Вероятность оценки события. Определение предельных вероятностей состояний системы.

    контрольная работа, добавлен 26.02.2012

  • Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.

    реферат, добавлен 10.11.2009

  • Решение дифференциальных уравнений математической модели системы с гасителем и без гасителя. Статический расчет виброизоляции. Определение собственных частот системы, построение амплитудно-частотных характеристик и зависимости перемещений от времени.

    контрольная работа, добавлен 22.12.2014

  • Понятие формальной системы. Основные понятия логики первого порядка. Доказательство неразрешимости проблемы остановки. Машина Тьюринга, ее структура. Вывод неразрешимости логики первого порядка из неразрешимости проблемы остановки и методом Геделя.

    курсовая работа, добавлен 16.02.2011

  • Методика проверки совместности системы уравнений и ее решение. Вычисление параметров однородной системы линейных алгебраических уравнений. Нахождение по координатам модуля, проекции вектора, скалярного произведения векторов. Составление уравнения прямой.

    контрольная работа, добавлен 23.01.2012

  • Математическая модель линейной непрерывной многосвязной системы. Уравнение движения и общее решение неоднородной системы линейных дифференциальных уравнений. Сигнальный граф системы и структурная схема. Динамики САУ и определение ее характеристик.

    реферат, добавлен 26.01.2009

  • Преимущества уравнений Лагранжа и их применение. Классификация связей внутри механической системы. Возможные перемещения механической системы и число степеней свободы. Применение уравнений Лагранжа второго рода к исследованию механической системы.

    курсовая работа, добавлен 21.08.2009

  • Понятие и поиск спектра как множества всех собственных характеристических показателей решений дифференциальной системы. Характеристические показатели Ляпунова заданной линейной стационарной системы. Теорема Ляпунова о нормальности фундаментальной системы.

    курсовая работа, добавлен 21.08.2009

  • Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

    лекция, добавлен 14.12.2010

  • Теоретическое обоснование расчетных формул. Задача Коши для дифференциального уравнения первого порядка. Метод Рунге-Кутта. Ломаная Эйлера. Построение схем различного порядка точности. Выбор шага. Апостериорная оценка погрешности. Правило Рунге.

    курсовая работа, добавлен 13.11.2011

  • Ознакомление с основными свойствами линейных дифференциальных уравнений первого, второго и n-го порядков с постоянными коэффициентами. Рассмотрение методов решения однородных и неоднородных уравнений и применения их при решении физических задач.

    дипломная работа, добавлен 18.09.2011

  • Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.

    лекция, добавлен 18.08.2012

  • Производные основных элементарных функций. Правила дифференцирования. Условия существования и единственности задачи Коши. Понятие дифференциальных уравнений, их применение в моделях экономической динамики. Однородные линейные ДУ первого и второго порядка.

    курсовая работа, добавлен 22.10.2014

  • Решение системы уравнений по формулам Крамера и методом Гаусса. Нахождение объема пирамиды, площади грани, величины проекции вектора с помощью средств векторной алгебры. Пример определения и решения уравнения стороны, высоты и медианы треугольника.

    контрольная работа, добавлен 22.04.2014

  • Общая характеристика параболических дифференциальных уравнений на примере уравнения теплопроводности. Основные определения и конечно-разностные схемы. Решение дифференциальных уравнений параболического типа методом сеток или методом конечных разностей.

    контрольная работа, добавлен 27.04.2011

  • Решение систем линейных уравнений методами Крамера и Гауса. Граф состояний марковской системы. Составление уравнений Колмогорова. Предельные вероятности состояний системы. Матричный метод, матрица треугольная, матрица квадратная и решение системы.

    контрольная работа, добавлен 20.07.2010

  • Существование и единственность решений дифференциальных уравнений. Геометрическая интерпретация решений. Линейные и нелинейные системы. Дифференциальные уравнения, моделирующие динамику популяций конкурирующих видов, их решения и фазовые портреты.

    дипломная работа, добавлен 27.06.2012

  • Определение алгебраического дополнения элемента определителя, матрицы, ее размера и видов. Неоднородная система линейных алгебраических уравнений. Решение системы уравнений методом Крамера. Скалярные и векторные величины, их примеры, разложение вектора.

    контрольная работа, добавлен 19.06.2009

  • Вывод уравнения движения маятника. Кинетическая и потенциальная сила энергии. Определение всех положений равновесия. Исследование на устойчивость. Аналитический и численный расчет траектории системы. Изображение траектории системы разными способами.

    контрольная работа, добавлен 12.04.2016

  • Общая характеристика и особенности двух методов решения обычных дифференциальных уравнений – Эйлера первого порядка точности и Рунге-Кутта четвёртого порядка точности. Листинг программы для решения обычного дифференциального уравнения в Visual Basic.

    курсовая работа, добавлен 04.06.2010

  • Однородный Марковский процесс. Построение графа состояний системы. Вероятность выхода из строя и восстановления элемента. Система дифференциальных уравнений Колмогорова. Обратное преобразование Лапласа. Определение среднего времени жизни системы.

    контрольная работа, добавлен 08.09.2010

  • Метод Гаусса - последовательное исключение переменных из системы уравнений. Определение понятия расширенной матрицы. Метод Крамера, расчет определителя системы. Метод обратной матрицы. Расчет алгебраических дополнений для элементов полученной матрицы.

    презентация, добавлен 21.09.2013

  • Исследование кривой второго порядка. Определение типа кривой с помощью инвариантов. Приведение к каноническому виду, построение графиков. Исследование поверхности второго порядка. Определение типа поверхности. Анализ формы поверхности методом сечений.

    курсовая работа, добавлен 28.06.2009

  • Правила вычисления коэффициентов n-образов. Рассмотрение алгоритмов решения линейных ОДУ с переменными коэффициентами второго и произвольного порядков. Общепринятые способы определения частного решения неоднородного дифференциального уравнения.

    книга, добавлен 03.10.2011

  • Понятие и специфические черты системы линейных алгебраических уравнений. Механизм и этапы решения системы линейных алгебраических уравнений. Сущность метода исключения Гаусса, примеры решения СЛАУ данным методом. Преимущества и недостатки метода Гаусса.

    контрольная работа, добавлен 13.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.