Применение дифференциального и интегрального исчисления к решению физических и геометрических задач в MATLab
История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.
Подобные документы
- 76. Текстовые задачи
Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.
презентация, добавлен 20.02.2015 Деятельность при решении задач складывается из умственных действий и осуществляется эффективно, если первоначально она происходит на основе внешних действий с предметами. Главная проблема - дети не могут перейти от текста задачи к математической модели.
дипломная работа, добавлен 24.06.2008Составление диагональной системы способом прогонки, нахождение решения задачи Коши для дифференциального уравнения на сетке методом Эйлера и классическим методом Рунге-Кутта. Построение кубического сплайна интерполирующей функции равномерного разбиения.
практическая работа, добавлен 06.06.2011История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.
реферат, добавлен 09.10.2008Вычисление площадей плоских фигур. Нахождение определенного интеграла функции. Определение площади под кривой, площади фигуры, заключенной между кривыми. Вычисление объемов тел вращения. Предел интегральной суммы функции. Определение объема цилиндра.
презентация, добавлен 18.09.2013Общий интеграл дифференциального уравнения, приводящегося к однородному. Решение задачи Коши методами интегрирующего множителя и способом Бернулли. Построение интегральной кривой методом изоклин. Составление матрицы системы и применение теоремы Крамера.
курсовая работа, добавлен 23.12.2010Вычисление интеграла, выполнение интегрирования по частям. Применение метода неопределенных коэффициентов, приведение уравнения к системе. Введение вспомогательных функций в процессе поиска решения уравнения и вычисления интеграла, разделение переменных.
контрольная работа, добавлен 08.07.2011Способы решения логических задач типа "Кто есть кто?" методами графов, табличным способом, сопоставлением трех множеств; тактических, истинностных задач, на нахождение пересечения множеств или их объединения. Буквенные ребусы и примеры со звездочками.
курсовая работа, добавлен 15.06.2010Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.
контрольная работа, добавлен 28.07.2013Применение граф-схем - кратчайший путь доказательства теорем. Нахождение искомых величин путем рассуждений. Алгоритм решения логических задач методами таблицы и блок-схемы. История появления теории траекторий (математического бильярда), ее преимущества.
реферат, добавлен 21.01.2011Линейные однородные дифференциальные уравнения второго порядка, общий вид. Линейная зависимость векторов и функций. Определитель Вронского, практические примеры его нахождения. Неоднородные уравнения второго порядка, теорема и доказательство, решение.
презентация, добавлен 17.09.2013Страницы биографии древнегреческого философа и математика Пифагора. Теорема Пифагора: основные формулировки и методы доказательства. Обратная теорема Пифагора. Примеры задач на применение теоремы Пифагора. "Пифагоровы штаны" и "тройка", "дерево Пифагора".
научная работа, добавлен 29.03.2011- 88. Функции Бесселя
Изложение теории бесселевых функций, их приложения к уравнениям математической физики. Виды цилиндрических функций. Применение бесселевых функций в математической физике на примере некоторых задач. Уравнение Лапласа в цилиндрических координатах.
дипломная работа, добавлен 09.10.2011 История возникновения и понятия дифференциальной геометрии, в которой плоские и пространственные кривые и поверхности изучаются с помощью дифференциального исчисления и методами математического анализа. Применение темы "Теория поверхностей " в школе.
реферат, добавлен 23.04.2015Основные свойства векторов. Теории кривых и поверхностей. Натуральная параметризация. Формулы Сере-Френе и Эйлера. Уравнение соприкасающейся окружности. Теорема Менье. Индикатриса Дюпена. Индексные обозначения в дифференциальной геометрии поверхностей.
курсовая работа, добавлен 01.02.2014Правила применения уравнения Бернулли для определения возможности наступления события. Использование формул Муавра-Лапласа и Пуассона при неограниченном возрастании числа испытаний. Примеры решения задач с помощью теоремы Бернулли о частоте вероятности.
курсовая работа, добавлен 21.01.2011Особенности выражения производной неизвестной функции. Общий вид дифференциального уравнения первого порядка, его решение. Сущность теоремы Коши (о существовании и единственности решения), её геометрический смысл. Общее и частное решение уравнения.
презентация, добавлен 17.09.2013Гиперболические уравнения и уравнения смешанного типа. Неограниченная область свойства решений эллиптических уравнений. Вспомогательные леммы и утверждения. Существование резольвенты дифференциального оператора. Применение преобразования Фурье.
реферат, добавлен 30.04.2013- 94. Теорема Менелая
Биография Менелая Александрийского - древнегреческого астронома и математика. Формулировка и доказательство теоремы Менелая для плоского случая, при переносе центральным проектированием на сферу. Применение теоремы для решения прикладных задач.
презентация, добавлен 17.11.2013 Сущность понятия "дифференциальное уравнение". Главные этапы математического моделирования. Задачи, приводящие к решению дифференциальных уравнений. Решение задач поиска. Точность маятниковых часов. Решение задачи на определение закона движения шара.
курсовая работа, добавлен 06.12.2013Задачи, приводящие к понятию производной. Особенности определения с помощью этого основного понятия дифференциального исчисления уравнения касательной к непрерывной кривой в заданной точке, скорости, производительности труда в определенный момент времени.
презентация, добавлен 21.09.2013Понятия целой и дробной частей действительного числа. Основные свойства функции и ее график. Применение свойств функции y = [x] при решении уравнений и геометрических задач. Описание реальных процессов непрерывными функциями. Решение задач на делимость.
курсовая работа, добавлен 29.05.2016Исследование сходимости рядов. Степенной ряд интеграла дифференциального уравнения. Определение вероятности событий, закона распределения случайной величины, математического ожидания, эмпирической функции распределения, выборочного уравнения регрессии.
контрольная работа, добавлен 04.10.2010Программа курса, основные понятия и формулы теории вероятностей, их обоснование и значение. Место и роль математической статистики в дисциплине. Примеры и разъяснения по решению самых распространенных задач по различным темам данных учебных дисциплин.
методичка, добавлен 15.01.2010Порядок и принципы составления дифференциального уравнения, методика нахождения неизвестных значений. Замена исходного дифференциального уравнения на систему n-линейных уравнений относительно n-неизвестных. Формирование и решение системы уравнений.
задача, добавлен 20.09.2013