Краевая задача Гильберта
Метод регуляризующего множителя для решения задачи Гильберта для аналитических функций в случае произвольной односвязной области. Постановка краевой задачи типа Гильберта в классе бианалитических функций, а также решение конкретных примеров задач.
Подобные документы
Ознакомление с теоремами теории аналитических функций. Определение и основные свойства индекса функции. Постановка и методы решения однородной и неоднородной задач Римана для односвязной и многосвязной областей. Принципы нахождения функции сдвига.
курсовая работа, добавлен 20.12.2011Сущность методов сведения краевой задачи к задаче Коши и алгоритмы их реализации на ПЭВМ. Применение метода стрельбы (пристрелки) для линейной краевой задачи, определение погрешности вычислений. Решение уравнения сшивания для нелинейной краевой задачи.
методичка, добавлен 02.03.2010Обзор краевых задач для уравнения смешанного эллептико-гиперболического типа. Доказательство существования единственного решения краевой задачи для одного уравнения гиперболического типа со специальными условиями сопряжения на линии изменения типа.
контрольная работа, добавлен 23.04.2014Банаховы функциональные пространства. Постановка краевой задачи и исследование ее однозначной разрешимости и отрицательности функции Грина. Признаки существования решения краевой задачи для нелинейного функционально-дифференциального уравнения.
курсовая работа, добавлен 27.05.2015Решение линейной краевой задачи методом конечных разностей (методом сеток). Замена области непрерывного изменения аргументов дискретным множеством узлов (сеток). Сведение линейной краевой задачи к системе линейных алгебраических уравнений (сеточных).
лекция, добавлен 28.06.2009Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.
контрольная работа, добавлен 28.07.2013Історія появи й розвитку геометрії: постулати Евкліда, аксіоматика Гильберта та інші системи геометричних аксіом. Неевклідові геометрії в системі Вейля. Різні моделі площини Лобачевского, незалежність 5-го постулату Евкліда від інших аксіом Гильберта.
дипломная работа, добавлен 12.02.2011Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.
курсовая работа, добавлен 25.11.2011Описание метода сведения краевой задачи к задаче Коши. Решение системы из двух уравнений с четырьмя неизвестными. Метод Рунге-Кутта. Расчет максимальной погрешности и выполнение проверки точности. Метод конечных разностей. Описание полученных результатов.
курсовая работа, добавлен 10.07.2012- 10. Текстовые задачи
Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.
презентация, добавлен 20.02.2015 Решение линейной краевой задачи методом конечных разностей. Сопоставление различных вариантов развития процесса с применением анализа графиков, построенных на базе полученных данных. Графическое обобщение нескольких вариантов развития процесса.
лабораторная работа, добавлен 15.11.2010Основные элементы теорий однородных и краевых задач Римана, Гильберта, Нетера. Использование различных способов регуляризации полных особых интегральных уравнений. Некоторые основные свойства особых союзных операторов. Уравнения Фредгольма и Пуанкаре.
курсовая работа, добавлен 17.02.2014Графическое решение задачи линейного программирования. Общая постановка и решение двойственной задачи (как вспомогательной) М-методом, правила ее формирования из условий прямой задачи. Прямая задача в стандартной форме. Построение симплекс таблицы.
задача, добавлен 21.08.2010Математическое моделирование и особенности задачи распределения. Обоснование и выбор метода решения. Ручное решение задачи (венгерский метод), а также с использованием компьютера. Формулировка полученного результата в сопоставлении с условием задачи.
курсовая работа, добавлен 26.05.2010Диофант Александрийский - древнегреческий математик и одна из загадок в истории математики. Диофантовы уравнения как математическая модель жизненных ситуаций. Задачи на разложение числа. Китайская теорема об остатках. Десятая проблема Гильберта.
реферат, добавлен 22.06.2014Изучение численно-аналитического метода решения краевых задач математической физики на примере неоднородной задачи Дирихле для уравнения Лапласа. Численная реализация вычислительного метода и вычислительного эксперимента, особенности их оформления.
практическая работа, добавлен 28.01.2014Нелокальная краевая задача, которая является некоторым аналогом задачи Бицадзе-Самарского. Единственность ее решения доказывается принципом максимума, а существование решения доказывается сведением задачи к эквивалентному ей интегральному уравнению.
задача, добавлен 13.05.2008Описание метода потенциалов Математическая постановка задачи об оптимальных перевозках. Метод решения задачи об оптимальных перевозках средствами Ms Excel. Постановка параметрической транспортной задачи, ее математическое и компьютерное моделирование.
курсовая работа, добавлен 21.10.2014Доказательство существования или отсутствия алгоритма для решения поставленной задачи. Определение алгоритмической неразрешимости задачи. Понятия суперпозиции функций и рекурсивных функций. Анализ схемы примитивной рекурсии и операции минимизации.
курсовая работа, добавлен 12.07.2015Применение метода дополнительного аргумента к решению характеристической системы. Доказательство существования решения задачи Коши. Постановка задачи численного расчёта. Дискретизация исходной задачи и её решение итерациями. Программа и её описание.
дипломная работа, добавлен 25.05.2014Постановка задачи коммивояжера и основные алгоритмы решения. Маршруты и пути. Понятия транспортной сети. Понятие увеличивающая дуга, цепь, разрез. Алгоритм Флойда-Уоршелл. Решение задачи аналитическим методом. Создание приложения для решения задачи.
курсовая работа, добавлен 08.10.2015О происхождении задачи удвоения куба (одной из пяти знаменитых задач древности). Первая известная попытка решения задачи, решение Архита Тарентского. Решение задачи в Древней Греции после Архита. Решения с помощью конических сечений Менехма и Эратосфена.
реферат, добавлен 13.04.2014Первая краевая задача и граничное условие 1-го рода. Задачи с однородными граничными условиями. Задача с главными неоднородными условиями и ее вариационная постановка. Понятие обобщенного решения. Основные условия сопряжения и условия согласования.
презентация, добавлен 30.10.2013Формирование нижних и верхних оценок целевой функции. Алгоритм метода ветвей и границ, решение задач с его помощью. Решение задачи коммивояжера методом ветвей и границ. Математическая модель исследуемой задачи, принципы ее формирования и порядок решения.
курсовая работа, добавлен 25.11.2011Суть задачи коммивояжера, ее применение. Общая характеристика методов ее решения: метод полного перебора, "жадные" методы, генетические алгоритмы и их обобщения. Особенности метода ветвей и границ и определение наиболее оптимального решения задачи.
курсовая работа, добавлен 18.06.2011