Некоторые вопросы геометрии Лобачевского на модели Пуанкаре
Модель Пуанкаре геометрии Лобачевского: вопрос о ее непротиворечивости. Инверсия, ее аналитическое задание. Преобразование окружности и прямой, сохранение углов при инверсии. Инвариантные прямые и окружности. Система аксиом геометрии Лобачевского.
Подобные документы
История возникновения неевклидовой геометрии. Сравнение постулатов параллельности Евклида и Лобачевского. Основные понятия и модели геометрии Лобачевского. Дефект треугольника и многоугольника, абсолютная единица длины. Определение параллельной прямой.
курсовая работа, добавлен 15.03.2011Обзор пяти групп аксиом, на которых зиждется планиметрия Лобачевского. Сущность модели Кэли-Клейна в высшей геометрии. Особенности доказательства теоремы косинусов, теорем о сумме углов треугольника, о четвертом признаке конгруэнтности треугольников.
курсовая работа, добавлен 29.06.2013Применение метода инверсии при решении задач на построение в геометрии. Решение задачи Аполлония, лемма об антипараллельных прямых. Инвариантные окружности и сохранение углов при инверсии. Недостатки применения инверсии и работа инверсора Гарта.
дипломная работа, добавлен 30.09.2009Биография Н.И. Лобачевского. Деятельность Лобачевского по организации печатного университетского органа и его попытки основать при университете Научное общество. История признания геометрии Н.И. Лобачевского в России. Появление неевклидовой геометрии.
дипломная работа, добавлен 14.09.2011Краткая биография Н.И. Лобачевского. История открытия неевклидовой геометрии. Основные факты и непротиворечивость геометрии Лобачевского, её значение и применение в математике и физике. Путь признания идей Н.И. Лобачевского в России и за рубежом.
дипломная работа, добавлен 21.08.2011Биография русского ученого Н.И. Лобачевского. Система аксиом Гильберта. Параллельные прямые, треугольники и четырехугольники на плоскости и пространстве по Лобачевскому. Понятие о сферической геометрии. Доказательство теорем на различных моделях.
реферат, добавлен 12.11.2010Студенческие годы Н.И. Лобачевского. Первые годы преподавательской деятельности. Организация печатного университетского органа. История открытия неевклидовой геометрии. Признание геометрии Н.И. Лобачевского и ее применение в математике и физике.
дипломная работа, добавлен 05.03.2011Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.
презентация, добавлен 12.04.2015Изучение истории развития геометрии, анализ постулатов Евклида, аксиоматики Гильберта, обзор других систем аксиом геометрии. Характеристика неевклидовых геометрий в системе Вейля. Элементы сферической геометрии. Различные модели плоскости Лобачевского.
дипломная работа, добавлен 13.02.2010Порядок проведения эксперимента "Иллюзии зрения", его сущность и содержание. Постулаты Евклидовой геометрии. Аксиомы геометрии Лобачевского. Сравнительный анализ двух геометрий, их отличительные и сходные черты, особенности преподнесения, доказательства.
презентация, добавлен 24.02.2011Изучение этапов развития геометрии – науки, изучающей пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Геометрия Древнего Египта, Греции, средневековья. Постулаты Н.И. Лобачевского.
презентация, добавлен 06.05.2010- 12. Виды геометрий
Геометрия Евклида — теория, основанная на системе аксиом, изложенной в "Началах". Гиперболическая геометрия Лобачевского, ее применение в математике и физике. Реализация геометрии Римана на поверхностях с постоянной положительной гауссовской кривизной.
презентация, добавлен 12.09.2013 Основные положения теории инверсии. Определение инверсии-симметрии относительно окружности. Неподвижные точки и окружность инверсии. Образы прямых и окружностей при обобщенной инверсии. Свойства обобщенной инверсии.
дипломная работа, добавлен 08.08.2007Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.
реферат, добавлен 16.01.2010Анализ проявлений недоказуемости пятого постулата Евклида. Общая характеристика и обоснование основных идей неевклидовской геометрии в работах Д. Саккери, И.Г. Ламберта, Я. Бояи, Ф. Швейкарта, Ф.А. Тауринуса, К.Ф. Гаусса, Н.И. Лобачевского, Я. Больяйя.
реферат, добавлен 21.09.2010Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.
курсовая работа, добавлен 24.11.2009Биография Николая Ивановича Лобачевского - выдающегося российского математика. Главные достижения Н.И. Лобачевского - доказательство того, что существует более чем одна "истинная" геометрия, геометрические исследования по теории параллельных линий.
презентация, добавлен 19.03.2012Понятие начертательной геометрии, ее сущность и особенности, предмет и методы изучения, история зарождения и развития. Цели и задачи начертательной геометрии, ее структура и элементы. Прямая и варианты ее расположения, разновидности и методы определения
лекция, добавлен 21.02.2009Понятия сферической геометрии, соответствие между сферической геометрией и планиметрией. Применение сферической тригонометрии в навигации. Углы сферического многоугольника, анализ планиметрических аксиом. Теорема косинусов для сферических треугольников.
курсовая работа, добавлен 06.12.2011Основы геометрии чисел. Решетки, подрешетки и их базисы. Основные теоремы геометрии чисел. Связь квадратичных форм с решетками. Методы геометрии чисел для решения диофантовых уравнений. Теорема Минковского о выпуклом теле. Квадратичная форма решетки.
дипломная работа, добавлен 24.06.2015Характеристика истории происхождения и этапов развития геометрии – одной из самых древних наук, чей возраст исчисляется тысячелетиями, и в которой много формул, задач, теорем, фигур, аксиом. Основные умения и понимания древних египтян в сфере геометрии.
презентация, добавлен 23.03.2011Происхождение и основные понятия сферической геометрии. Принципы и особенности дистанционного обучения. Процесс дистанционного обучения. Основные модели дистанционного обучения. Роль преподавателя. Дистанционный курс по "Сферической геометрии".
дипломная работа, добавлен 23.12.2007Геометрические понятия точки, луча и угла. Виды углов: развернутые, острые, прямые, тупые, смежные и вертикальные. Способы построения смежных и вертикальных углов. Равенство вертикальных углов. Проверка знаний на уроке геометрии: определение вида углов.
презентация, добавлен 13.03.2010Научно-методические достоинства учебного пособия по геометрии Погорелова. Анализ недостатков учебника "Геометрия 7-9". Структура основных взаимосвязей в системе определений и теорем в курсе геометрии. Подготовка учителя к доказательству теорем на уроке.
дипломная работа, добавлен 11.01.2011Исследование понятия "форма" в биологии и векторной геометрии. Математическая модель формообразования и пути познания энергетических процессов в геометрии. Деление отрезка в золотом сечении. Уравнение экспансии как векторная основа формообразования.
реферат, добавлен 20.08.2009