Методы коллокаций и Галеркина

Метод коллокаций - определение функции, удовлетворяющей линейное дифференциальное уравнение и линейные краевые условия. Определение коэффициентов конечной суммы в выражении для приближенного решения дифференциального уравнения методом Галёркина.

Подобные документы

  • Вычисление и исследование предела и производной функции, построение графиков. Вычисление неопределенных интегралов, площади фигуры, ограниченной графиками функций. Нахождение решения дифференциального уравнения и построение графиков частных решений.

    контрольная работа, добавлен 19.01.2010

  • Проверка непрерывности заданных функций. Интегрирование заданного уравнения и выполние преобразования с ним. Интегрирование однородного дифференциального уравнения. Решение линейного дифференциального уравнения. Общее решение неоднородного уравнения.

    контрольная работа, добавлен 15.12.2010

  • Типы уравнений, допускающих понижение порядка. Линейное дифференциальное уравнение высшего порядка. Теоремы о свойствах частичных решений. Определитель Вронского и его применение. Использование формулы Эйлера. Нахождение корней алгебраического уравнения.

    презентация, добавлен 29.03.2016

  • Приближенные решения кубических уравнений. Работы Диофанта, Ферма и Ньютона. Интерационный метод нахождения корня уравнения. Геометрическое и алгебраическое описания метода хорд. Погрешность приближенного решения. Линейная скорость сходимости метода.

    презентация, добавлен 17.01.2011

  • Поиск общего интеграла дифференциального уравнения. Расстановка пределов интегрирования. Координаты вершины параболы. Объем тела, ограниченного поверхностями. Вычисление криволинейного интеграла. Полный дифференциал функции. Вычисление дуги цепной линии.

    контрольная работа, добавлен 28.03.2014

  • Решение дифференциального уравнения методом Адамса. Нахождение параметров синтезирования регулятора САУ численным методом. Решение дифференциального уравнения неявным численным методом. Анализ системы с использованием критериев Михайлова и Гурвица.

    курсовая работа, добавлен 13.07.2010

  • Общий интеграл уравнения, применение метода Лагранжа для решения неоднородного линейного уравнения с неизвестной функцией. Решение дифференциального уравнения в параметрической форме. Условие Эйлера, уравнение первого порядка в полных дифференциалах.

    контрольная работа, добавлен 02.11.2011

  • Систематизация сведений о линейных и квадратичных зависимостях и связанных с ними уравнениях и неравенствах. Выделение полного квадрата, как метод решения некоторых нестандартных задач. Свойства функции |х|. Уравнения и неравенства, содержащие модули.

    дипломная работа, добавлен 25.06.2010

  • Построение таблицы и графика решения линейного дифференциального уравнения. Зависимость погрешности решения от выбора шага интегрирования. Метод Адамса-Башфорта и его применение. Основные функции и переменные, использованные в реализованной программе.

    контрольная работа, добавлен 13.06.2012

  • Теория решения диофантовых уравнений. Однородные уравнения. Общие линейные уравнения. Единственности разложения натурального числа на простые множители. Решение каждой конкретной задачи в целых числах с помощью разных методов. Основные неизвестные х и у.

    материалы конференции, добавлен 13.03.2009

  • Нахождение решения уравнения с заданными граничными и начальными условиями, система дифференциальных уравнений. Симметричное преобразование Фурье. Решение линейного разностного уравнения. Допустимые экстремали функционала. Уравнение Эйлера-Лагранжа.

    контрольная работа, добавлен 05.01.2016

  • Описание методов решения системы линейного алгебраического уравнения: обратной матрицы, Якоби, Гаусса-Зейделя. Постановка и решение задачи интерполяции. Подбор полиномиальной зависимости методом наименьших квадратов. Особенности метода релаксации.

    лабораторная работа, добавлен 06.12.2011

  • Общая характеристика параболических дифференциальных уравнений на примере уравнения теплопроводности. Основные определения и конечно-разностные схемы. Решение дифференциальных уравнений параболического типа методом сеток или методом конечных разностей.

    контрольная работа, добавлен 27.04.2011

  • Численные методы решения систем линейных алгебраических уравнений, алгоритмы, их реализующие. Нормы матриц и векторов, погрешность приближенного решения системы и обусловленность матриц. Интеграционные методы решения: методы простой итерации, релаксации.

    учебное пособие, добавлен 02.03.2010

  • Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.

    курсовая работа, добавлен 26.01.2015

  • Системы уравнений. Запись в виде системы. Линейное уравнение с двумя переменными. Квадратные уравнения второй степени. Упрощенное уравнение третей степени. Переменная в четвертой степени. Множество корней (решений). Способ подстановки. Способ сложения.

    реферат, добавлен 02.06.2008

  • Составление диагональной системы способом прогонки, нахождение решения задачи Коши для дифференциального уравнения на сетке методом Эйлера и классическим методом Рунге-Кутта. Построение кубического сплайна интерполирующей функции равномерного разбиения.

    практическая работа, добавлен 06.06.2011

  • Исследование зависимости погрешности решения от погрешностей правой части системы. Определение корня уравнения с заданной точностью. Вычисление точностных оценок методов по координатам. Сплайн интерполяция и решение дифференциального уравнения.

    контрольная работа, добавлен 26.04.2011

  • Представления фазовых кривых систем двух обыкновенных дифференциальных уравнений вблизи критического направления. Построение примеров, удовлетворяющих методу Фроммера. Нахождение характеристических чисел 1 и 2 рода дифференциального уравнения в C++.

    дипломная работа, добавлен 11.02.2012

  • Линейные уравнения с параметрами. Методы и способы решения систем с неизвестным параметром (подстановка, метод сложения уравнений и графический). Выявление алгоритма действий. Поиск значения параметров, при которых выражение определяет корень уравнения.

    контрольная работа, добавлен 17.02.2014

  • Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.

    контрольная работа, добавлен 28.07.2013

  • Правила вычисления коэффициентов n-образов. Рассмотрение алгоритмов решения линейных ОДУ с переменными коэффициентами второго и произвольного порядков. Общепринятые способы определения частного решения неоднородного дифференциального уравнения.

    книга, добавлен 03.10.2011

  • Дифференциальное уравнение первого порядка, разрешенное относительно производной. Применение рекуррентного соотношения. Техника применения метода Эйлера для численного решения уравнения первого порядка. Численные методы, пригодные для решения задачи Коши.

    реферат, добавлен 24.08.2015

  • Дифференциальное уравнение первого порядка. Формулировка теоремы существования и единственности. Линейные уравнения с постоянными коэффициентами. Доказательство теоремы существования и единственности для одного уравнения. Теория устойчивости Ляпунова.

    дипломная работа, добавлен 11.04.2009

  • Решение кубического уравнения на основе современных методов: разложение левой части на линейные множители; с помощью формулы Кардана; специальных таблиц. Рассмотрение метода решения кубических уравнений, включая неприводимый случай формулы Кардана.

    задача, добавлен 20.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.