Кластеризация с помощью нейронных сетей
Сущность, структура, алгоритм функционирования самообучающихся карт. Начальная инициализация и обучение карты. Сущность и задачи кластеризации. Создание нейронной сети со слоем Кохонена при помощи встроенной в среды Matlab. Отличия сети Кохонена от SOM.
Подобные документы
Возможности программ моделирования нейронных сетей. Виды нейросетей: персептроны, сети Кохонена, сети радиальных базисных функций. Генетический алгоритм, его применение для оптимизации нейросетей. Система моделирования нейронных сетей Trajan 2.0.
дипломная работа, добавлен 13.10.2015Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа, добавлен 05.10.2010Принципы организации и функционирования биологических нейронных сетей. Система соединенных и взаимодействующих между собой простых процессоров. Нейронные сети Маккалока и Питтса. Оценка качества кластеризации. Обучение многослойного персептрона.
курсовая работа, добавлен 06.12.2010Математическая модель искусственной нейронной сети. Структура многослойного персептрона. Обучение без учителя, методом соревнования. Правило коррекции по ошибке. Метод Хэбба. Генетический алгоритм. Применение нейронных сетей для синтеза регуляторов.
дипломная работа, добавлен 17.09.2013Построение векторной модели нейронной сети. Проектирование и разработка поискового механизма, реализующего поиск в полнотекстовой базе данных средствами нейронных сетей Кохонена с применением модифицированного алгоритма расширяющегося нейронного газа.
курсовая работа, добавлен 18.07.2014Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа, добавлен 23.09.2013Принципы и система распознавание образов. Программное средство и пользовательский интерфейс. Теория нейронных сетей. Тривиальный алгоритм распознавания. Нейронные сети высокого порядка. Подготовка и нормализация данных. Самоорганизующиеся сети Кохонена.
курсовая работа, добавлен 29.04.2009Простейшая сеть, состоящая из группы нейронов, образующих слой. Свойства нейрокомпьютеров (компьютеров на основе нейронных сетей), привлекательных с точки зрения их практического использования. Модели нейронных сетей. Персептрон и сеть Кохонена.
реферат, добавлен 30.09.2013Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа, добавлен 29.09.2014Реалізація сегментації позичальників методом карт Кохонена за допомогою пакету Deductor Studio. Послідовність дій, які необхідно провести для аналізу даних у Deductor Studio. Результат сегментації на картах Кохонена та характеристика кожного сегменту.
контрольная работа, добавлен 29.09.2010Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа, добавлен 18.02.2017Математические модели, построенные по принципу организации и функционирования биологических нейронных сетей, их программные или аппаратные реализации. Разработка нейронной сети типа "многослойный персептрон" для прогнозирования выбора токарного станка.
курсовая работа, добавлен 03.03.2015Исследование нечеткой модели управления. Создание нейронной сети, выполняющей различные функции. Исследование генетического алгоритма поиска экстремума целевой функции. Сравнительный анализ нечеткой логики и нейронной сети на примере печи кипящего слоя.
лабораторная работа, добавлен 25.03.2014- 14. Нейронные сети
Преимущества нейронных сетей. Модели нейронов, представляющих собой единицу обработки информации в нейронной сети. Ее представление с помощью направленных графов. Понятие обратной связи (feedback). Основная задача и значение искусственного интеллекта.
реферат, добавлен 24.05.2015 Обучение простейшей и многослойной искусственной нейронной сети. Метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Реализация в программном продукте NeuroPro 0.25. Использование алгоритма обратного распространения ошибки.
курсовая работа, добавлен 05.05.2015Классификация группы входящих пакетов, поступающих на одну из рабочих станций в ЛВС. Описание хакерских атак. Построение интеллектуальной системы анализа входящего трафика по классам опасности на использовании нейронной сети конкурирующего типа.
курсовая работа, добавлен 27.10.2010Преимущества и недостатки нейронных сетей с радиальными базисными функциями (РБФ). Функции newrbe и newrb для построения РБФ общего вида и автоматической настройки весов и смещений. Пример построения нейронной сети с РБФ в математической среде Matlab.
лабораторная работа, добавлен 05.10.2010Прогнозирование валютных курсов с использованием искусственной нейронной сети. Общая характеристика среды программирования Delphi 7. Существующие методы прогнозирования. Характеристика нечетких нейронных сетей. Инструкция по работе с программой.
курсовая работа, добавлен 12.11.2010Рост активности в области теории и технической реализации искусственных нейронных сетей. Основные архитектуры нейронных сетей, их общие и функциональные свойства и наиболее распространенные алгоритмы обучения. Решение проблемы мертвых нейронов.
реферат, добавлен 17.12.2011Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.
курсовая работа, добавлен 05.01.2013Различные методы решения задачи классификации. Нейросетевые парадигмы, методы обучения нейронных сетей, возникающие при этом проблемы и пути их решения. Описание программной реализации классификатора, его функциональные возможности и результаты обучения.
дипломная работа, добавлен 28.12.2015Технологии решения задач с использованием нейронных сетей в пакетах расширения Neural Networks Toolbox и Simulink. Создание этого вида сети, анализ сценария формирования и степени достоверности результатов вычислений на тестовом массиве входных векторов.
лабораторная работа, добавлен 20.05.2013Разработка приложения, целью которого ставится преобразование черно-белых полутоновых изображений в цветные. Обзор методики обработки изображения, способов преобразования изображения с помощью нейронной сети. Описания кластеризации цветового пространства.
дипломная работа, добавлен 17.06.2012Нейронные сети и оценка возможности их применения к распознаванию подвижных объектов. Обучение нейронной сети распознаванию вращающегося трехмерного объекта. Задача управления огнем самолета по самолету. Оценка экономической эффективности программы.
дипломная работа, добавлен 07.02.2013Этапы решения задачи классификации цифр арабского алфавита на основе нейронных сетей: выбор класса, структуры и пакета нейронной сети, ее обучение, требования к информационной и программной совместимости, составу и параметрам технических средств.
реферат, добавлен 19.10.2010