Максимальное независимое множество вершин
Теория динамического программирования. Понятие об оптимальной подструктуре. Независимое и полностью зависимое множество вершин. Задача о поиске максимального независимого множества в дереве. Алгоритм Брона-Кербоша как метод ветвей, границ для поиска клик.
Подобные документы
Определение понятия множеств Г. Кантора, их примеры и обозначения. Способы задания, включение и равенство множеств, операции над ними: объединение, пересечения, разность, дополнение, их определение и наглядное представление на диаграмме Эйлера-Венна.
реферат, добавлен 11.03.2009Понятия теории графов. Понятия смежности, инцидентности и степени. Маршруты и пути. Матрицы смежности и инцедентности. Алгоритм поиска минимального пути в ненагруженном ориентированном орграфе на любом языке программирования, алгоритм фронта волны.
курсовая работа, добавлен 28.04.2011Математическая теория нечетких множеств, история развития. Функции принадлежности нечетких бинарных отношений. Формирование и оценка перспективного роста предприятия оптовой торговли. Порог разделения ассортимента, главные особенности его определения.
контрольная работа, добавлен 08.11.2011Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.
реферат, добавлен 13.01.2011- 55. Теория графов
Ориентированные и неориентированные графы: общая характеристика, специальные вершины и ребра, полустепени вершин, матрицы смежности, инцидентности, достижимости, связности. Числовые характеристики каждого графа, обход в глубину и в ширину, базис циклов.
курсовая работа, добавлен 14.05.2012 Основные задачи при изучении курса "Высшая математика", Числовые множества: натуральные, целые, рациональные, действительные числа. Модуль числа, интервал, окрестность, отрезок, числовая ось. Аналитическая геометрия, скалярное произведение и вектор.
методичка, добавлен 26.10.2009Дифференциальное уравнение с начальными данными. Свойства предельных множеств автономных систем. Приближенное решение дифференциальных уравнений. Вопрос о сходимости ряда. Предельные множества траекторий автономных систем, состоящие из целых траекторий.
реферат, добавлен 12.12.2012Классическая задача комбинаторики, ее решение "правилом произведения". Реализация реальных связей между объектами в математических терминах на абстрактных множествах. Решение задач на доказательство тождества, особенности решения системы уравнений.
контрольная работа, добавлен 30.09.2010Разработка логико-формальной модели описания методики изготовления винных изделий. Разделение ингредиентов и продукции на множества. Исследование на рефлексивность, транзитивность, симметричность. Построение графа, матрицы смежности и инцидентности.
контрольная работа, добавлен 07.06.2010История зарождения и создания линейного программирования. Транспортная задача. Общая постановка, цели, задачи. Основные типы, виды моделей. Методы составления начального опорного плана. Понятие потенциала и цикла. Задача, двойственная к транспортной.
курсовая работа, добавлен 17.07.2002Практическиое решение задач по теории вероятности. Задача на условную вероятность. Задача на подсчет вероятностей. Задача на формулу полной вероятности. Задача на теорему о повторении опытов. Задача на умножение вероятностей. Задача на схему случаев.
контрольная работа, добавлен 24.09.2008Поиск кратчайших путей для пар вершин взвешенного ориентированного графа с весовой функцией. Включение матрицы в алгоритм Флойда, содержащую вершину, полученную при нахождении кратчайшего пути. Матрица, которая содержит длины путей из вершины в вершину.
презентация, добавлен 16.09.2013Основні положення теорії графов. Алгоритм розфарбування графу методом неявного перебору. Задання графу матрицею суміжності. Особливості програмної реалізації на мові Turbo Pascal алгоритму оптимального розфарбування вершин завантаженого з файлу графа.
курсовая работа, добавлен 15.06.2014Целочисленные задачи математического программирования. Постановка транспортной задачи по критерию стоимости в матричной форме. Задача о назначении (проблема выбора, задача о женихах и невестах). Алгоритм метода Гомори. Формирование правильного отсечения.
курсовая работа, добавлен 05.12.2012Способы решения логических задач типа "Кто есть кто?" методами графов, табличным способом, сопоставлением трех множеств; тактических, истинностных задач, на нахождение пересечения множеств или их объединения. Буквенные ребусы и примеры со звездочками.
курсовая работа, добавлен 15.06.2010Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Алгоритм Литтла для нахождения минимального гамильтонова контура для графа с n вершинами. Решение задачи коммивояжера с помощью алгоритма Крускала и "деревянного" алгоритма.
курсовая работа, добавлен 30.04.2011Построение подмножеств и диаграмм Венна по заданному универсальному множеству и его составляющим. Сложение, вычитание и транспонирование матриц. Метод понижения порядка и приведения системы к треугольному виду. Методы Крамера, Гаусса и матричный способ.
контрольная работа, добавлен 09.01.2011Теория частичных действий как естественное продолжение теории полных действий. История создания и перспективы развития теории упорядоченных множеств. Частично упорядоченные множества. Вполне упорядоченные множества. Частичные группоиды и их свойства.
реферат, добавлен 24.12.2007Понятия множеств и их элементов, подмножеств и принадлежности. Способы задания множеств, парадокс Рассела. Количество элементов или мощность. Сравнение множеств, их объединение, пересечение, разность и дополнение. Аксиоматическая теория множеств.
курсовая работа, добавлен 07.02.2011Теория математического программирования. Методы поиска глобального экстремума функции нескольких переменных. Угловые точки допустимых множеств. Постановка общей задачи нелинейного программирования. Решения уравнения f(x)=0 методом простой итерации.
контрольная работа, добавлен 05.01.2013Общая формулировка задания на курсовой проект. Линейное программирование. Задача целочисленного линейного программирования, с булевскими переменными. Нелинейное программирование. Задача поиска глобального экстремума функции.
курсовая работа, добавлен 17.05.2006Гипербола и ее свойства. Каноническая система координат. Понятие эксцентриситета, его зависимость от отношения мнимой и действительной полуосей. Уравнение директрис. Определение центра, оси, вершин, фокусов, эксцентриситета и асимптоты заданной гиперболы.
презентация, добавлен 02.06.2016Общая характеристика распространенных проблем поиска величины максимального потока в сети при помощи алгоритма Форда-Фалкерсона. Знакомство с задачами по дискретной математике. Рассмотрение особенностей и этапов постройки дерева кратчайших расстояний.
контрольная работа, добавлен 09.03.2015Понятие и виды задач математического линейного и нелинейного программирования. Динамическое программирование, решение задачи средствами табличного процессора Excel. Задачи динамического программирования о выборе оптимального распределения инвестиций.
курсовая работа, добавлен 21.05.2010Понятие правильного многогранника. Полное математическое описание правильных многогранников Евклида. Открытие двух законов орбитальной динамики. Основные характеристики икосаэдра. Отношение количества вершин правильного многогранника к количеству рёбер.
презентация, добавлен 19.02.2017