Диофантовы уравнения
Диофант Александрийский - древнегреческий математик и одна из загадок в истории математики. Диофантовы уравнения как математическая модель жизненных ситуаций. Задачи на разложение числа. Китайская теорема об остатках. Десятая проблема Гильберта.
Подобные документы
Знакомство с Пьером де Ферма - французским математиком, одним из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. Разработка способов систематического нахождения всех делителей числа. Великая теорема Ферма.
презентация, добавлен 16.12.2011Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.
статья, добавлен 29.08.2004Анализ особенностей разработки вычислительной программы. Общая характеристика метода простых итераций. Знакомство с основными способами решения нелинейного алгебраического уравнения. Рассмотрение этапов решения уравнения методом половинного деления.
лабораторная работа, добавлен 28.06.2013Дифференциальное уравнение первого порядка. Формулировка теоремы существования и единственности. Линейные уравнения с постоянными коэффициентами. Доказательство теоремы существования и единственности для одного уравнения. Теория устойчивости Ляпунова.
дипломная работа, добавлен 11.04.2009Жерар Дезарг как известный французский математик, краткий очерк его жизни и деятельности. Сущность и содержание теоремы данного ученого, исторические основы ее создания и развития, особенности применения к решению задач, на евклидовой плоскости.
курсовая работа, добавлен 28.04.2011Великий математик П’єр Ферма. Історія виникнення теореми Ферма-Ойлера. Способи її доведення Лагранжем та Д. Цагиром. Інволютивність перетворення трійки натуральних чисел. Єдиність та кількість представлення простого числа у вигляді суми двох квадратів.
курсовая работа, добавлен 08.05.2014Метод аналитического решения (в радикалах) алгебраического уравнения n-ой степени с возвратом к корням исходного уравнения. Собственные значения для нахождения функций от матриц. Устойчивость решений линейных дифференциальных и разностных уравнений.
научная работа, добавлен 05.05.2010Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
научная работа, добавлен 18.01.2010Вычисление интеграла, выполнение интегрирования по частям. Применение метода неопределенных коэффициентов, приведение уравнения к системе. Введение вспомогательных функций в процессе поиска решения уравнения и вычисления интеграла, разделение переменных.
контрольная работа, добавлен 08.07.2011Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.
дипломная работа, добавлен 06.05.2010Методы построения общего решения уравнения Бернулли. Примеры решения задач с помощью него. Особое решение уравнения Бернулли и его особенности. Понятие дифференциального уравнения, его виды и свойства. Значение уравнения Бернулли в математике и физике.
курсовая работа, добавлен 25.11.2011Обобщенные координаты, силы и скорости. Условия равновесия системы в обобщенных координатах. Уравнения Лагранжа. Системы с голономными связями (геометрические и интегрируемые дифференциальные). Доказательство уравнения движения механической системы.
презентация, добавлен 26.09.2013Понятие, закономерности формирования и решения дифференциальных уравнений. Теорема о существовании и единственности решения задачи Коши. Существующие подходы и методы решения данной задачи, оценка погрешности полученных значений. Листинг программы.
курсовая работа, добавлен 27.01.2014Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.
контрольная работа, добавлен 28.07.2013Задачи, приводящие к дифференциальным уравнениям. Теорема существования, единственности решения задачи Коши. Общее решение дифференциального уравнения, изображаемое семейством интегральных кривых на плоскости. Способ нахождения огибающей семейства кривых.
реферат, добавлен 24.08.2015Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.
курсовая работа, добавлен 25.11.2011Исследование задачи Дирихле для вырождающегося уравнения смешанного типа в прямоугольной области методами спектрального анализа. Обоснование корректности постановки нелокальных начально-граничных задач различных вырождающихся дифференциальных уравнений.
курсовая работа, добавлен 06.05.2011Понятие и характерные признаки равносильных уравнений, требования к множеству их решений. Теорема о равносильности уравнений и порядок ее доказательства, значение в современной математике. Порядок и основные этапы нахождения корней уравнения-следствия.
презентация, добавлен 17.03.2011Метод разделения переменных в задаче Штурма-Лиувилля. Единственность решения смешанной краевой задачи, реализуемая методом априорных оценок. Постановка и решение смешанной краевой задачи для нелокального волнового уравнения с дробной производной.
курсовая работа, добавлен 29.11.2014Арифметическая теория квадратичных форм, их практическое применение в приведении уравнения кривой и поверхности второго порядка к каноническому виду. Самосопряженный оператор, его характеристика, использование и функции. Собственные числа и вектора.
курсовая работа, добавлен 28.11.2012Получены другие формулы для решений уравнения Пифагора x^2+y^2=z^2, отличные от формул древних индусов, и делающие возможным доказательство для всех нечётных значений показателя n тем же способом бесконечного спуска Ферма, что и для n=4. Доказательство.
статья, добавлен 30.04.2008Изучение численно-аналитического метода решения краевых задач математической физики на примере неоднородной задачи Дирихле для уравнения Лапласа. Численная реализация вычислительного метода и вычислительного эксперимента, особенности их оформления.
практическая работа, добавлен 28.01.2014Понятие дифференциального уравнения. Нахождение первообразной для заданной функции. Нахождение решения дифференциального уравнения. Выделение определенной интегральной кривой. Понятие произвольных независимых постоянных. Уравнение в частных производных.
презентация, добавлен 17.09.2013Общий интеграл дифференциального уравнения, приводящегося к однородному. Решение задачи Коши методами интегрирующего множителя и способом Бернулли. Построение интегральной кривой методом изоклин. Составление матрицы системы и применение теоремы Крамера.
курсовая работа, добавлен 23.12.2010Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.
курсовая работа, добавлен 24.11.2013