К вопросу о количественном содержании простых чисел близнецов в натуральном ряде чисел

Исторические факты исследования простых чисел в древности, настоящее состояние проблемы. Распределение простых чисел в натуральном ряде чисел, характер и причина их поведения. Анализ распределения простых чисел-близнецов на основе закона обратной связи.

Подобные документы

  • Расширенный алгоритм Евклида, его использование для нахождения наибольшего общего делителя натуральных чисел посредством остатков от деления. Математическая проблема календаря. Евклидовы кольца - аналоги чисел Фибоначчи в кольце многочленов, их свойства.

    реферат, добавлен 25.09.2009

  • Структура и содержание учебно-методического пособия. Наполнение разделов "Операции с большими числами", "Вероятностные тесты на простоту", "Доказуемо простые числа". Разработка заданий для лабораторных и самостоятельных работ. Тесты для самопроверки.

    дипломная работа, добавлен 25.02.2009

  • Простое расширение Q+(a). Минимальное соотношение алгебраического элемента над полуполем рациональных неотрицательных чисел. Однопорожденные полуполя. Структура простого расширения полуполя неотрицательных рациональных чисел.

    дипломная работа, добавлен 08.08.2007

  • Идея элементарного доказательства великой теоремы Ферма исключительно проста: разложение чисел a, b, c на пары слагаемых, группировка из них двух сумм U' и U'' и умножение равенства a^n + b^n – c^n = 0 на 11^n (т.е. на 11 в степени n, а чисел a, b, c на 1

    статья, добавлен 07.07.2005

  • Фибоначчи Леонардо Пизанский — первый крупный математик средневековой Европы. Ряд чисел Фибоначчи - элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Примеры ряда Фибоначчи в повседневной жизни.

    доклад, добавлен 24.03.2012

  • Ознакомление с записью чисел в алфавитной системе счисления. Особенности установления числовых значений букв у славянских народов. Рассмотрение записи больших чисел в славянской системе счисления. Обозначение "тем", "легионов", "леордов" и "колод".

    презентация, добавлен 30.09.2012

  • История отрицательных чисел: их отрицание в Древнем Египте, Вавилоне, Греции, узаконивание в Китае и Индии. Математические действия с ними. Подходы к определению положению нуля как натурального числа. Изучение отрицательных чисел в школьной программе.

    презентация, добавлен 13.05.2011

  • Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.

    курсовая работа, добавлен 15.06.2011

  • Краткий биографический очерк жизни и деятельности Георга Кантора и Шарля Мерэ. История создания теории действительного числа, ее математическая сущность и характеристика. Определение отношения порядка. Понятие замкнутости множества вещественных чисел.

    презентация, добавлен 11.06.2011

  • Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.

    реферат, добавлен 13.01.2011

  • Гипотеза Биля как неопределенное уравнение, не имеющее решения в целых положительных числах. Использование метода замены переменных. Запись уравнения в соответствии с известной зависимостью для разности квадратов двух чисел. Наличие дробных чисел.

    творческая работа, добавлен 25.06.2009

  • Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника и наука вообще. История цифр. Числа и счисление. Способы запоминания чисел.

    реферат, добавлен 13.04.2008

  • Понятие математического моделирования: выбор чисел случайным образом и их применение. Критерий частот, серий, интервалов, разбиений, перестановок, монотонности, конфликтов. Метод середины квадратов. Линейный конгруэнтный метод. Проверка случайных чисел.

    контрольная работа, добавлен 16.02.2015

  • Комплексные числа в алгебраической форме. Степень мнимой единицы. Геометрическая интерпретация комплексных чисел. Тригонометрическая форма. Приложение теории комплексных чисел к решению уравнений 3-й и 4-й степени. Комплексные числа и параметры.

    дипломная работа, добавлен 10.12.2008

  • Примеры изучение дробных и многозначных чисел путем ребусов и головоломок. Основные принципы получения трехзначных чисел, путем шестикратного сложения. Математические задачи, направленные на развитие логического мышления и быстрого усваивания материала.

    презентация, добавлен 04.02.2011

  • Как люди научились считать, возникновение цифр, чисел и систем счисления. Таблица умножения на "пальцах": методика умножения для чисел 9 и 8. Примеры быстрого счета. Способы умножения двузначного числа на 11, 111, 1111 и т.д. и трехзначного числа на 999.

    курсовая работа, добавлен 22.10.2011

  • Абелевы группы по сложению. Кольца, образованные аддитивной группой ZxZ. Кольца, образованные аддитивной группой ZxZxZ. Подкольца поля комплексных чисел и кольца классов вычетов целых чисел. Теория ассоциативных колец.

    дипломная работа, добавлен 08.08.2007

  • Спиральная последовательность квадратов чисел. Последовательность чисел Фибоначчи и "золотое сечение" Леонардо да Винчи. Живые и неживые числа. Общая корзина "Гармонии Мироздания". Показательная спираль живой органики или спираль "Китовраса".

    статья, добавлен 18.04.2012

  • Рассмотрение понятий, лежащих в основе методики изучения нумерации чисел первого десятка. Анализ использования современных средств обучения детей начальной школы. Проектирование уроков по изучению нумерации чисел в методической системе "Школа России".

    дипломная работа, добавлен 13.10.2015

  • Вычисление комплексных чисел, модуля и аргумента, извлечение кубических корней. Нахождение синусов и косинусов в алгебраическом виде. Решение системы уравнений с помощью формул Крамера, вспомогательных определителей и средствами матричного исчисления.

    контрольная работа, добавлен 11.05.2013

  • Мнимые и действительные, равные и сопряжённые комплексные числа; модуль и аргумент. Арифметические действия над множеством комплексных чисел: сумма, разность, произведение, деление. Представление комплексных чисел на координатной комплексной плоскости.

    презентация, добавлен 17.09.2013

  • Основная задача геометрии чисел. Теорема Минковского. Доказательство теоремы Минковского. Решётки. Критические решётки. "Неоднородная задача". Герман Минковский (Minkowski) (1864 - 1909) - выдающийся математик, еврей, родом из России, профессор.

    курсовая работа, добавлен 29.05.2006

  • Динаміка розвитку поняття ймовірності й математичного очікування. Закон більших чисел, необхідні, достатні умови його застосування. Первісне осмислення статистичної закономірності. Поява теорем Бернуллі й Пуассона - найпростіших форм закону більших чисел.

    дипломная работа, добавлен 11.02.2011

  • Історія становлення поняття дійсного числа. Властивості ланцюгових дробів загального виду з додатними елементами. Зображення дійсних чисел ланцюговими дробами загального виду і системними дробами. Задачі, при розв’язанні яких використовуються ці дроби.

    курсовая работа, добавлен 02.03.2014

  • Определение операций сложения, вычитания и умножения для дуальных чисел. Определение модуля и сопряжённого числа. Деление на дуальное число. Определение делителя нуля. Запись дуального числа в форме, близкой к тригонометрической форме комплексного числа.

    курсовая работа, добавлен 10.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.