Вектор-функция. Понятие кривой, линии и поверхности. Дифференциальная геометрия и топология кривых

Понятие и способы образования плоских и кривых линий. Примеры пересечения алгебраической кривой линии. Поверхность в геометрии. Аргументы вектор-функции. Уравнения семейства линий. Способ построения касательной и нормали в произвольной точке лемнискаты.

Подобные документы

  • Задачи, приводящие к дифференциальным уравнениям. Теорема существования, единственности решения задачи Коши. Общее решение дифференциального уравнения, изображаемое семейством интегральных кривых на плоскости. Способ нахождения огибающей семейства кривых.

    реферат, добавлен 24.08.2015

  • Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.

    презентация, добавлен 12.04.2015

  • Косвенный интеграл от функции, обращающейся в бесконечность в изолированной точке. Комплексный интеграл Пуассона. Абстрактный расходящийся ряд. Векторы. Аксиоматичный математический анализ. Эмпирический вектор. Экспериментальный интеграл Фурье.

    реферат, добавлен 04.05.2008

  • Подробный анализ поверхностей Каталана и условия, отделяющие этот класс от класса линейчатых поверхностей. Формулы для расчета первой и второй квадратичных форм поверхностей класса КА. Доказательство утверждений о влиянии вида кривых на тип поверхности.

    дипломная работа, добавлен 06.06.2011

  • Исследование кривой второго порядка. Определение типа кривой с помощью инвариантов. Приведение к каноническому виду, построение графиков. Исследование поверхности второго порядка. Определение типа поверхности. Анализ формы поверхности методом сечений.

    курсовая работа, добавлен 28.06.2009

  • Определение точки пересечения высот треугольника и координат вектора. Сущность базиса системы векторов и его доказательство. Определение производных функций, исследование ее и построение графика. Неопределенные интегралы и их проверка дифференцированием.

    контрольная работа, добавлен 26.01.2010

  • Основные признаки поверхности. Эллипсоид: понятие; плоскости симметрии. Сфера как замкнутая поверхность. Параметрические уравнения тора и катеноида. Общее понятие про геликоид. Параболоид как поверхность вращения. Параметрические уравнения цилиндра.

    реферат, добавлен 21.11.2010

  • Сведения о плоских кривых. Замечательные кривые третьего порядка. Классификация Ньютона кривых третьего порядка. Циссоида и ее свойства. Преобразования плоскости, переводящие кривые второго порядка в кривые третьего порядка. Преобразования Маклорена.

    дипломная работа, добавлен 22.04.2011

  • Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.

    дипломная работа, добавлен 17.05.2010

  • Роль идей и методов проективной геометрии в математической науке. Закономерности кривых второго порядка и кривых второго класса, основные теоремы Паскаля и Брианшона, описывающие замечательное свойство шестиугольника вписанного в кривую второго порядка.

    курсовая работа, добавлен 04.11.2013

  • Производная функция. Касательная к кривой. Геометрический смысл производной. Производные от элементарных функций. Изучение функций с помощью производной. Максимум и минимум функции. Точки перегиба. Дифференциал.

    статья, добавлен 11.01.2004

  • История развития учения о линиях. Замечательные линии третьего порядка: Декартов лист, циссоида Диоклеса, строфрида, верзьера Аньези. Линии четвертого и высших порядков и некоторые трансцендентные линии: спираль Архимеда, кривая кратчайшего спуска.

    курсовая работа, добавлен 12.06.2011

  • Аналитическая геометрия. Декартова система координат, линии на плоскости и кривые второго порядка. Поверхности в трехмерном пространстве. Система n линейных уравнений с n неизвестными. Элементы математического анализа. Основные правила комбинаторики.

    отчет по практике, добавлен 15.11.2014

  • Найти векторные линии в векторном поле. Вычислить длину дуги линии. Вычислить поток векторного поля через поверхность. Найти все значения корня. Представить в алгебраической форме.

    лабораторная работа, добавлен 17.08.2002

  • Цепочка теорем, которая охватывает весь курс геометрии. Средняя линия фигур как отрезок, соединяющий середины двух сторон данной фигуры. Свойства средних линий. Построение различных планиметрических и стереометрических фигур, рациональное решение задач.

    научная работа, добавлен 29.01.2010

  • Векторы на плоскости и в пространстве. Обыкновенное дифференциальное уравнение. Необходимые формулы для решения задач о касательной. Метод наименьших квадратов. Необходимые определения и формулы для вычисления интегралов. Производные элементарных функций.

    курс лекций, добавлен 21.04.2009

  • Определение типа кривой по виду уравнения, уравнение с угловым коэффициентом, в отрезках и общее уравнение. Определение медианы, уравнения средней линии в треугольнике. Вопросы по линейной алгебре. Решение системы уравнения при помощи обратной матрицы.

    контрольная работа, добавлен 31.10.2010

  • Схема полного исследования бесконечно больших и малых функций и построение их графика. Арифметические теоремы о пределе функции. Применение формулы Тейлора, Маклорена, Коши, Лопиталя-Бернулли. Теорема о производной вектор-функции постоянной длины.

    курс лекций, добавлен 14.12.2012

  • Система кривых Пирсона. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Примеры нахождения кривых распределения вероятностей и программное обеспечение.

    дипломная работа, добавлен 13.03.2003

  • Касательная прямая и нормальная плоскость кривой. Соприкасающаяся плоскость, кривизна и кручение, первая и вторая квадратичная форма, касательная плоскость и нормаль в выбранной и произвольной точке. Нахождение полной и средней кривизны поверхности.

    курсовая работа, добавлен 07.08.2013

  • Классификация различных точек поверхности. Омбилические точки поверхности. Строение поверхности вблизи эллиптической, параболической и гиперболической точек. Линии кривизны поверхности и омбилические точки. Поверхность, состоящая из омбилических точек.

    дипломная работа, добавлен 24.06.2015

  • Геометрия на Востоке. Греческая геометрия. Геометрия новых веков. Классическая геометрия XIX века. Неевклидовая геометрия. Геометрия XX века. Современная геометрия во многих своих дисциплинах выходит далеко за пределы классической геометрии.

    реферат, добавлен 14.07.2004

  • Теоремы Паскаля, Брианшона для пятиугольника, четырехугольника, треугольника. Их использование для решения задач конструктивного типа проективной геометрии линий 2-го порядка на расширенной прямой, связанные с построением точек и касательных к ним.

    курсовая работа, добавлен 02.06.2013

  • Расчет первообразной, построение ее графика. Построение семейства первообразных при изменении произвольной постоянной от -10 до 10. Расчет площади площадь криволинейной трапеции. Поиск интеграла методом подстановки. Расчет длины кривой ro=a(1+сosphi).

    контрольная работа, добавлен 02.11.2011

  • Основные задачи, решаемые методом координат. Действия над матрицами. Понятие минора и алгебраического дополнения. Собственные векторы и собственные значения линейного оператора. Действия с множествами. Геометрический смысл дифференциала функции.

    учебное пособие, добавлен 22.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.