Лист Мёбиуса

Лист (лента) Мёбиуса как топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве. История возникновения ленты Мёбиуса, её свойства, применение в геометрии и в повседневной жизни.

Подобные документы

  • Способы формообразования и отображения поверхностей. Закон образования поверхности. Основные свойства, вытекающие из закона образования поверхности вращения. Линейчатые поверхности с плоскостью параллелизма. Образование каркаса циклических поверхностей.

    реферат, добавлен 19.05.2014

  • История появления понятия "интеграла" и интегрального исчисления, его особенности и значение. Интеграл как один из основных инструментов работы с функциями. Обоснование необходимости выражения всех физических явлений в виде математической формулы.

    презентация, добавлен 19.05.2014

  • Краткие биографические сведения из жизни и научных изысканиях ученых Евклида и Архимеда. Разработка Евклидом основ стереометрии, планометрии, алгебры, теории чисел, отражение их в труде "Начала". Вклад Архимеда в развитие арифметики, геометрии, механики.

    реферат, добавлен 13.06.2009

  • Различные виды правильных и полуправильных многогранников, их основные свойства. Многогранные поверхности, многогранники, топологические, простейшие и правильные многогранники. Грани, ребра и вершины поверхности многогранника. Пирамиды и призмы.

    курсовая работа, добавлен 21.08.2013

  • Основные сведения о тетраэдре - поверхности, составленной из четырех треугольников. Количество его граней, ребер, вершин. Свойства тетраэдра, формулы нахождения объема, радиуса, высоты. Тетраэдры в живой природе, технике. Теорема Менелая для тетраэдра.

    презентация, добавлен 20.04.2014

  • Основные открытия Пифагора в области геометрии, географии, астрономии, музыки и нумерологии. Изначальная и алгебраическая формулировки знаменитой теоремы. Один их многочисленных способов доказательства теоремы Пифагора, ее основные следствия и применение.

    презентация, добавлен 05.12.2010

  • Цепочка теорем, которая охватывает весь курс геометрии. Средняя линия фигур как отрезок, соединяющий середины двух сторон данной фигуры. Свойства средних линий. Построение различных планиметрических и стереометрических фигур, рациональное решение задач.

    научная работа, добавлен 29.01.2010

  • История возникновения и развития теории узлов. Плоские диаграммы узлов и зацеплений. Характеристика инварианта раскрасок, полинома Конвея и d-диаграммы как основных способов задания узлов. Применение узлов в математике, биологии, физике и химии.

    курсовая работа, добавлен 10.06.2014

  • Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.

    курсовая работа, добавлен 24.11.2009

  • Доказательство теоремы о линейно независимой системе векторов в пространстве Rn. Краткое рассмотрение базиса пространства Rn, в котором каждый вектор ортогонален остальным векторам базиса, особенности его представления на плоскости и в пространстве.

    презентация, добавлен 21.09.2013

  • Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.

    статья, добавлен 05.01.2010

  • Значение и применение комбинаторики. Решение и геометрическое представление комбинаторной задачи "очередь в кассу". Применение метода подсчёта ломаных, определение свойства числа сочетаний. Блуждания по бесконечной плоскости в четырёх направлениях.

    курсовая работа, добавлен 05.12.2012

  • Выпуклые многогранники и их "ежи". Понятие опорной плоскости и ее свойства. Пересечение конечного числа полупространств. Множество векторов в пространстве. Многогранники с центрально-симметричными гранями и центрально-симметричные многогранники.

    презентация, добавлен 22.04.2013

  • Понятие матрицы и линейные действия над ними. Свойства операции сложения матриц. Определители второго и третьего порядков. Применение правила Саррюса. Основные методы решения определителей. Элементарные преобразования матрицы. Свойства обратной матрицы.

    учебное пособие, добавлен 04.03.2010

  • Понятие ранга матрицы. Модель Леонтьева многоотраслевой экономики. Свойства скалярного произведения. Разложение вектора по координатным осям. Минор и алгебраическое дополнение. Определители второго и третьего порядка. Плоскость и прямая в пространстве.

    курс лекций, добавлен 30.10.2013

  • История возникновения процентов, способы их записи. Основные типы задач с применением процентных вычислений. Нахождение процентов в школе, их использование в сфере торговли. Функции и формы кредитов, анализ процентных ставок по ним в банках г. Завитинска.

    контрольная работа, добавлен 25.03.2014

  • Основные свойства кривых второго порядка. Построение кривой в канонической и общей системах координат. Переход уравнения поверхности второго порядка к каноническому виду. Исследование формы поверхности методом сечений и построение полученных сечений.

    курсовая работа, добавлен 17.05.2011

  • Действие оператора точечной группы в двух- и трехмерном пространстве. Определение его порядка по матрице Система эквивалентных точек. Возможные порядки осей симметрии в кристаллографическом пространстве. Геометрическая интерпретация сложения операторов.

    презентация, добавлен 23.09.2013

  • Геометрия как раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Основные этапы становления и развития данной науки, ее современные достижения и перспективы.

    презентация, добавлен 21.05.2012

  • Схема и разность векторов. Умножение вектора на число. Координаты точки и вектора. Компланарные векторы и прямоугольная система координат. Длина, скалярное произведение, его свойства и угол между векторами. Переместительный и сочетательный законы.

    творческая работа, добавлен 23.06.2009

  • Геометрия как раздел математики, изучающий пространственные структуры, отношения и их обобщения. Планиметрия, стереометрия, проективная геометрия. История развития науки. Исследование свойств плоских фигур. Сущность понятий "полупрямая", "треугольник".

    презентация, добавлен 16.10.2014

  • Векторы на плоскости и в пространстве. Расстояние между началом и концом. Коллинеарные и нулевые векторы. Условие коллинеарности и перпендикулярности векторов. Определение суммы и разницы векторов. Свойства операций сложения и умножения вектора на число.

    презентация, добавлен 21.09.2013

  • Определение оператора в гильбертовом пространстве. Индексы дефекта симметрического оператора. Преобразование Кэли и формулы Неймана. Формула Крейна для резольвент самосопряженных расширений заданного симметрического оператора, доказательство теорем.

    курсовая работа, добавлен 18.08.2011

  • Истоки, понятие аналитической геометрии. Метод координат на плоскости. Аффинная и Декартова система координат на плоскости, прямая и окружность. Аналитическое задание геометрических фигур. Применение аналитического метода к решению планиметрических задач.

    курсовая работа, добавлен 12.05.2009

  • Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.

    реферат, добавлен 30.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.