Операция факториалов и история появления их в положительных рядах
Понятие и сущность факториала, его обозначение и применение в математических исчислениях. Основные свойства факториалов, история создания и способы представления формулы Стирлинга-Муавра. Научная деятельность Джеймса Стирлинга и Абрахама де Муавра.
Подобные документы
Применение граф-схем - кратчайший путь доказательства теорем. Нахождение искомых величин путем рассуждений. Алгоритм решения логических задач методами таблицы и блок-схемы. История появления теории траекторий (математического бильярда), ее преимущества.
реферат, добавлен 21.01.2011История появления тригонометрии, роль Л. Эйлера в ее развитии. Тригонометрические функции плоского угла. Применение гармонических колебаний и волновых процессов. Преобразование Фурье и Хартли. Общее понятие про тригонометрическое нивелирование.
презентация, добавлен 29.03.2012Основные понятия и определения кубических уравнений, способы их решения. Формула Кардано и тригонометрическая формула Виета, сущность метода перебора. Применение формулы сокращенного умножения разности кубов. Определение корня квадратного трехчлена.
курсовая работа, добавлен 21.10.2013История квадратных уравнений: уравнения в Древнем Вавилоне и Индии. Формулы четного коэффициента при х. Квадратные уравнения частного характера. Теорема Виета для многочленов высших степеней. Исследование биквадратных уравнений. Сущность формулы Кордано.
реферат, добавлен 09.05.2009Основные формулы и алгебраические свойства. Применение многочленов Чебышева-Эрмита в квантовой механике. Определение потенциальной энергии. Ортонормированный многочлен Чебышева-Эрмита. Уравнение Шрёдингера в одномерном случае. Коэффициенты разложения.
курсовая работа, добавлен 21.11.2014Открытие формулы австрийским математиком Георгом Пиком в 1899 году. Доказательство Теоремы Пика, последовательность этапов для различных вариантов. Нахождение и расчет площадей четырехугольников в квадратных сантиметрах с использованием данной формулы.
презентация, добавлен 14.04.2013- 32. Теория игр
История развития теории игр как математического метода изучения оптимальных стратегий в играх. Представление игр: экстенсивная и нормальная форма. Классификация и типы математических игр, их характеристика. Общее понятие и основные цели метаигры.
реферат, добавлен 29.12.2010 - 33. Пирамида
История развития понятия пирамиды как многогранника в стереометрии, её элементы, свойства и виды. Частные случаи пирамид: правильная, усечённая, прямоугольная. Теоремы, связывающие пирамиду с другими геометрическими телами и формулы, связанные с ней.
презентация, добавлен 15.03.2016 История появления аксиоматического метода. Аксиомы и основные понятия как основания планиметрии, их разновидности. Биография и история сочинений Евклида. Лобачевский как великий русский математик, создатель геометрии, общая характеристика трудов.
доклад, добавлен 28.03.2010Понятие "задача" и процесс ее решения. Технология обучения приемам восприятия и осмысления, поиска и составления плана решения. Методика обучения решению задач различными методами. Сущность, смысл и обозначение дробей, практические способы их сравнения.
методичка, добавлен 03.04.2011Операция умножения матриц на примере. Сложение линейных операторов, главные свойства. Определение групп Ли, линейные и индуцированные представления. Сущность понятия "унитарный трюк". Ассоциативная алгебра с полимиальным тождеством. Радикал Джекобсона.
курсовая работа, добавлен 17.07.2016Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.
курсовая работа, добавлен 05.09.2009Значение и применение комбинаторики. Решение и геометрическое представление комбинаторной задачи "очередь в кассу". Применение метода подсчёта ломаных, определение свойства числа сочетаний. Блуждания по бесконечной плоскости в четырёх направлениях.
курсовая работа, добавлен 05.12.2012Основные понятия теории полуколец. Определение полукольца. Дистрибутивные решетки. Идеалы полуколец. Положительные и ограниченные полукольца. Определение и примеры положительных и ограниченных полуколец. Свойства положительных полуколец.
дипломная работа, добавлен 08.08.2007Основные принципы и формулы классической комбинаторики. Использование методов комбинаторики в теории вероятностей. Формулы числа перестановок, сочетаний, размещений. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Решение комбинаторных задач.
учебное пособие, добавлен 07.05.2012Пирамида — многогранник, основание которого — многоугольник, а остальные грани — треугольники, имеющие общую вершину. История развития пирамиды; виды, элементы, углы, развёртка, свойства; теоремы, связывающие ее с другими геометрическими телами; формулы.
презентация, добавлен 28.03.2012Аналитические свойства интегральных преобразований. Интеграл Коши на различных кривых. Аналитическая зависимость от параметра. Существование производных всех порядков у аналитической функции. Вывод формулы Коши и формулировка следствий из данной формулы.
курсовая работа, добавлен 10.04.2011Общая терминология и история изобретения логарифма. Характеристики натурального и обычного логарифма, определение дробного числа и мантиссы. Таблицы и свойства натуральных логарифмов. Логарифмическая и экспоненциальная кривая, понятие функции логарифма.
реферат, добавлен 05.12.2011Детство и отрочество Андрея Колмогорова - советского математика, одного из основоположников современной теории вероятностей. Студенческие годы А.Н. Колмогорова, его становление в науке. Научная и педагогическая деятельность ученого, признание заслуг.
реферат, добавлен 17.03.2014Первое доказательство существования иррациональных чисел. Развитие теории пропорций Евдоксом Книдским. Теоремы, корень из 2 - иррациональное число. Трансцендентное число: сущность понятия, свойства, примеры, история. История уточнения числа пи.
контрольная работа, добавлен 27.11.2011История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.
курсовая работа, добавлен 16.10.2013Сущность моделирования, значение и необходимость создания различных моделей, сферы их практического использования. Свойства объекта, существенные и несущественные для принятия решений. Граф как средство наглядного представления состава и структуры схемы.
презентация, добавлен 26.06.2014Ученые математики, открытия которых являются основой научно-технического прогресса. Квадратные уравнения в Европе в XII-XVII веках. Научная деятельность Ф. Виета и её роль в развитии математики в XVI веке. Особенности применения научных открытий в жизни.
презентация, добавлен 16.05.2012Перестройка структуры и содержания учебного курса математики в процессе проведения реформ математического образования. Определения косинуса, синуса и тангенса острого угла. Основные тригонометрические формулы. Понятие и основные свойства векторов.
дипломная работа, добавлен 11.01.2011Физическое и математическое определение центра масс. Основные свойства центров масс. Изучение закона Харди-Вайнберга. Решение геометрических задач барицентрическим методом. Применение барицентрических координат в химических и топологических задачах.
курсовая работа, добавлен 25.02.2015