Производная функции
Производные от функций, заданных параметрически. Геометрический смысл дифференциала. Применение дифференциала в приближенных вычислениях. Теоремы Коши, Лагранжа и Ролля о дифференцируемых функциях, их геометрическая интерпретация. Правило Лопиталя.
Подобные документы
Исследование методами математического анализа поведения функций при заданных значениях аргумента. Этапы решения уравнения функции и определения значения аргумента и параметра. Построение графиков. Сочетание тригонометрических, гиперболических функций.
контрольная работа, добавлен 20.08.2010Определение предела последовательности. Понятие производной и правила дифференцирования. Теоремы Роля, Лангража, правило Лапиталя. Исследования графиков функций. Таблица неопределенных и вычисление определенных интегралов. Функции нескольких переменных.
презентация, добавлен 17.03.2010Основные сведения о симплекс-методе, оценка его роли и значения в линейном программировании. Геометрическая интерпретация и алгебраический смысл. Отыскание максимума и минимума линейной функции, особые случаи. Решение задачи матричным симплекс-методом.
дипломная работа, добавлен 01.06.2015Определение, свойства и примеры функциональных уравнений. Основные методы их решения, доказательство некоторых теорем. Понятие группы функций, применение их при решении функциональных уравнений с несколькими переменными. Класс уравнений типа Коши.
курсовая работа, добавлен 01.10.2011- 80. Функция Дирака
Определение функции Дирака. Задачи, приводящие к определению дельта-функции Дирака. Математическое определение дельта-функции. Применение функции Дирака. Разрывные функции и их производные. Нахождение производных разрывных функций.
дипломная работа, добавлен 08.08.2007 Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.
презентация, добавлен 18.09.2013Определение и простейшие свойства измеримой функции. Дальнейшие свойства измеримых функций. Последовательности измеримых функций. Сходимость по мере. Структура измеримых функций. теоремы о приближении измеримых функций.
курсовая работа, добавлен 28.05.2007Введение в математический анализ. Индивидуальные домашние задания по теме "Предел функции и непрерывность» и по теме "Производная". Комбинаторика, бином Ньютона, математическая индукция и комплексные числа. Применение производной при исследовании функции.
учебное пособие, добавлен 25.08.2009- 84. Метод хорд
Определение понятий "хорда", "пропорциональность", "приращение функции". Доказательство теорем Ферма, Ролля и Лагранжа. Особенности и условия применения метода хорд при решении уравнений разного порядка. Ознакомление с правилом пропорциональных частей.
реферат, добавлен 25.05.2014 - 85. Пределы
Определение корня первого и второго многочлена, вычисление предела функции. Применение правила Лопиталя (предел отношения функций равен пределу отношения их производных). Пример использования замечательного предела, который применяется в виде равенства.
контрольная работа, добавлен 19.03.2015 Система линейных уравнений. Матричное решение системы уравнений. Геометрический смысл операций с комплексными числами. Элементы аналитической геометрии в пространстве. Классификация функций. Основные элементарные функции. Раскрытие неопределенностей.
шпаргалка, добавлен 12.01.2009Рассмотрение примеров задач и теорем, доказываемых при помощи контрпримера. Применение терминов "производная" и "дифференцируемая функция". Построение немецким математиком Вейерштрассом первого примера непрерывной нигде не дифференцируемой функции.
курсовая работа, добавлен 07.10.2013- 88. Формула Грина
Применение формулы Грина к решению задач. Понятие ротора векторного поля. Вывод формулы Грина из формулы Стокса и ее доказательство. Определение непрерывно дифференцируемых функций. Применение формулы Грина для вычисления криволинейного интеграла.
курсовая работа, добавлен 11.07.2012 Формирование функции Лагранжа, условия Куна и Таккера. Численные методы оптимизации и блок-схемы. Применение методов штрафных функций, внешней точки, покоординатного спуска, сопряженных градиентов для сведения задач условной оптимизации к безусловной.
курсовая работа, добавлен 27.11.2012Комплексные числа в алгебраической форме. Степень мнимой единицы. Геометрическая интерпретация комплексных чисел. Тригонометрическая форма. Приложение теории комплексных чисел к решению уравнений 3-й и 4-й степени. Комплексные числа и параметры.
дипломная работа, добавлен 10.12.2008Слабые асимптотики произведения функций Хевисайда. Решение задачи Коши методом прямого интегрирования. Оценка задачи со ступенчатой функцией в качестве начального условия. Предел на бесконечности, получаемый при неограниченном уменьшении малого параметра.
курсовая работа, добавлен 23.09.2016Применение функции Лагранжа в выпуклом и линейном программировании. Простейшая задача Больца и классического вариационного исчисления. Использование уравнения Эйлера-Лагранжа для решения изопериметрической задачи. Краевые условия для нахождения констант.
курсовая работа, добавлен 16.01.2013Определение погрешности вычислений при численном дифференцировании. Алгебраический порядок точности численного метода как наибольшей степени полинома. Основной и вспомогательный бланк для решения задачи Коши. Применение интерполяционной формулы Лагранжа.
реферат, добавлен 10.06.2012Биография немецкого математика А. Гурвица. Основные положения теоремы Ферма. Обзор систем "чисел", которые можно построить, исходя из действительных чисел, путем добавления рядя "мнимых единиц". Приложение теоремы Гурвица: теоремы Фробениуса и Лагранжа.
курсовая работа, добавлен 25.05.2010Обзор понятия геометрической фигуры призмы, ее основания и боковых граней. Построение отрезков, нахождение высоты прямой и наклонной призмы. Расчет полной и боковой площадей поверхности фигуры. Изучение теоремы о площади боковой поверхности прямой призмы.
презентация, добавлен 17.05.2012Вычисление приближенных величин и погрешностей. Решение алгебраических и трансцендентных уравнений, интерполяция функций и методы численного интегрирования. Применение метода наименьших квадратов к построению эмпирических функциональных зависимостей.
курсовая работа, добавлен 08.01.2013Полнота и замкнутость системы булевых функций. Алгоритм построения таблицы истинности двойственной функции. Класс L линейных функций, сущность полинома Жегалкина. Распознавание монотонной функции по вектору ее значений. Доказательство теоремы Поста.
учебное пособие, добавлен 20.08.2014Преимущества уравнений Лагранжа и их применение. Классификация связей внутри механической системы. Возможные перемещения механической системы и число степеней свободы. Применение уравнений Лагранжа второго рода к исследованию механической системы.
курсовая работа, добавлен 21.08.2009Сущность конформного отображения 1 и 2 рода, аналитической функции в заданной области. Геометрический смысл аргумента и модуля производной функции. Величина коэффициента растяжения в точке. Сохранение функции отличной от нуля по величине и напряжению.
презентация, добавлен 17.09.2013Расчет показателей матрицы, ее определителя по строке и столбцу. Решение системы уравнений методом Гаусса, по формулам Крамера, с помощью обратной матрицы. Вычисление предела без использования правила Лопиталя. Частные производные второго порядка функции.
контрольная работа, добавлен 23.02.2012