Некоторые линейные операторы

Определение линейного оператора. Непрерывные линейные операторы в нормированном пространстве. Ограниченность и норма линейного оператора. Обратный оператор. Спектр оператора и резольвента. Операторы: умножения на непрерывную функцию; интегрирования; сдвиг

Подобные документы

  • Система линейных уравнений. Векторная алгебра, линейные операции для векторов, векторное (линейное) пространство. Случайные события и величины, плотность распределения вероятности, математическое ожидание, дисперсия, среднее квадратическое отклонение.

    методичка, добавлен 18.05.2010

  • Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения.

    презентация, добавлен 17.09.2013

  • Операция умножения матриц на примере. Сложение линейных операторов, главные свойства. Определение групп Ли, линейные и индуцированные представления. Сущность понятия "унитарный трюк". Ассоциативная алгебра с полимиальным тождеством. Радикал Джекобсона.

    курсовая работа, добавлен 17.07.2016

  • Вычисление пределов и устранение неопределенности. Поиск производных функций. Вычисление приближенного значения 8.051/3. Определение полного дифференциала функции z=3sin(2x+3y). Формула интегрирования по частям. Решение линейного однородного уравнения.

    контрольная работа, добавлен 25.03.2014

  • Теория решения диофантовых уравнений. Однородные уравнения. Общие линейные уравнения. Единственности разложения натурального числа на простые множители. Решение каждой конкретной задачи в целых числах с помощью разных методов. Основные неизвестные х и у.

    материалы конференции, добавлен 13.03.2009

  • Векторы в трехмерном пространстве. Линейные операции над векторами. Общее понятие про скалярные величины. Проекции векторов, их свойства. Коммутативность скалярного произведения, неравенство Коши-Буняковского. Примеры скалярного произведения векторов.

    контрольная работа, добавлен 06.05.2012

  • Линейные однородные дифференциальные уравнения второго порядка, общий вид. Линейная зависимость векторов и функций. Определитель Вронского, практические примеры его нахождения. Неоднородные уравнения второго порядка, теорема и доказательство, решение.

    презентация, добавлен 17.09.2013

  • Определения и параболические операторы. Принцип максимума для уравнений параболического типа. Применение принципа максимума при математическом моделировании процессов. Наличие экстремальных свойств уравнений. Решение уравнения теплопроводности.

    курсовая работа, добавлен 22.08.2013

  • Наличие некоторого динамического объекта, т.е. объекта, меняющегося во времени, характерного для задачи управления. Линейная задача быстродействия. Свойства экспоненциала матрицы. Линейные дифференциальные уравнения с управлением, пример интегрирования.

    контрольная работа, добавлен 13.03.2015

  • Определение собственного вектора матрицы как результата применения линейного преобразования, задаваемого матрицей (умножения вектора на собственное число). Перечень основных действий и описание структурной схемы алгоритма метода Леверрье-Фаддеева.

    презентация, добавлен 06.12.2011

  • Сущность линейного программирования. Изучение математических методов решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейной целевой функцией. Нахождение точек наибольшего или наименьшего значения функции.

    реферат, добавлен 20.05.2019

  • Особенности нормальной формы линейного преобразования. Изучение собственных и присоединенных векторов линейного преобразования. Выделение подпространства, в котором преобразование А имеет только одно собственное значение. Анализ инвариантных множителей.

    курсовая работа, добавлен 21.02.2010

  • Понятие функционала и оператора. Задачи, приводящие к экстремуму функционала, и необходимые условия его минимума. Связь между вариационной и краевой задачами. Функционалы, зависящие от нескольких функций. Вариационные задачи с подвижными границами.

    курсовая работа, добавлен 23.05.2010

  • Означення та властивості перетворення Лапласа, приклади розв'язання базових задач. Встановлення відповідності між двома точками за допомогою оператора. Застосування операційного методу математичного аналізу, проведення дій над логарифмами та числами.

    реферат, добавлен 20.12.2010

  • История зарождения и создания линейного программирования. Транспортная задача. Общая постановка, цели, задачи. Основные типы, виды моделей. Методы составления начального опорного плана. Понятие потенциала и цикла. Задача, двойственная к транспортной.

    курсовая работа, добавлен 17.07.2002

  • Задача целочисленного линейного программирования, приведение к канонической форме. Общие идеи методов отсечения. Алгоритм Гомори для решения целочисленных задач линейного программирования. Понятие правильного отсечения и простейший способ его построения.

    курсовая работа, добавлен 25.11.2011

  • Построение таблицы и графика решения линейного дифференциального уравнения. Зависимость погрешности решения от выбора шага интегрирования. Метод Адамса-Башфорта и его применение. Основные функции и переменные, использованные в реализованной программе.

    контрольная работа, добавлен 13.06.2012

  • Знакомство с особенностями построения математических моделей задач линейного программирования. Характеристика проблем составления математической модели двойственной задачи, обзор дополнительных переменных. Рассмотрение основанных функций новых переменных.

    задача, добавлен 01.06.2016

  • Гиперболические уравнения и уравнения смешанного типа. Неограниченная область свойства решений эллиптических уравнений. Вспомогательные леммы и утверждения. Существование резольвенты дифференциального оператора. Применение преобразования Фурье.

    реферат, добавлен 30.04.2013

  • Нахождение собственных значений и векторов линейного преобразования, заданных в некотором базисе матрицей. Составление характеристического уравнения и нахождение семейства векторов и их значения при решении, корни характеристического уравнения.

    контрольная работа, добавлен 29.05.2012

  • Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.

    учебное пособие, добавлен 09.03.2009

  • Интеграл Фурье в комплексной форме. Формулировка теоремы о сходимости интеграла для кусочно-гладких и абсолютно интегрируемых на числовой прямой функции. Примеры нахождения преобразования Фурье, сверстка и преобразование, спектр, некоторые приложения.

    курсовая работа, добавлен 27.08.2012

  • Зведення до канонічного вигляду кривих і поверхонь другого порядку методом ортогональних перетворень, побудова їх за заданими канонічними рівняннями. Визначення лінійних операторів та квадратичних форм. Власні вектори та значення лінійного оператора.

    курсовая работа, добавлен 13.11.2012

  • Понятие линейного программирования и его основные методы. Формулировка задачи линейного программирования в матричной форме и ее решение различными методами: графическим, табличным, искусственного базиса. Особенности решения данной задачи симплекс-методом.

    курсовая работа, добавлен 30.11.2010

  • Общее понятие вектора и векторного пространства, их свойства и дополнительные структуры. Графический метод в решении задачи линейного программирования, его особенности и область применения. Примеры решения экономических задач графическим способом.

    курсовая работа, добавлен 14.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.