Решение типовых задач теории оптимизации
Применение функции Лагранжа в выпуклом и линейном программировании. Простейшая задача Больца и классического вариационного исчисления. Использование уравнения Эйлера-Лагранжа для решения изопериметрической задачи. Краевые условия для нахождения констант.
Подобные документы
Составление уравнения Эйлера, нахождение его общего решения. Нахождение с использованием уравнения Эйлера-Лагранжа оптимального управления, минимизирующего функционал для системы. Использование метода динамического программирования для решения уравнений.
контрольная работа, добавлен 01.04.2010Общий интеграл уравнения, применение метода Лагранжа для решения неоднородного линейного уравнения с неизвестной функцией. Решение дифференциального уравнения в параметрической форме. Условие Эйлера, уравнение первого порядка в полных дифференциалах.
контрольная работа, добавлен 02.11.2011Формирование функции Лагранжа, условия Куна и Таккера. Численные методы оптимизации и блок-схемы. Применение методов штрафных функций, внешней точки, покоординатного спуска, сопряженных градиентов для сведения задач условной оптимизации к безусловной.
курсовая работа, добавлен 27.11.2012Понятия и термины вариационного исчисления. Понятие функционала, его первой вариации. Задачи, приводящие к экстремуму функционала, условия его минимума. Прямые методы вариационного исчисления. Практическое применение метода Ритца для решения задач.
курсовая работа, добавлен 08.04.2015Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.
курсовая работа, добавлен 25.11.2011Нахождение решения уравнения с заданными граничными и начальными условиями, система дифференциальных уравнений. Симметричное преобразование Фурье. Решение линейного разностного уравнения. Допустимые экстремали функционала. Уравнение Эйлера-Лагранжа.
контрольная работа, добавлен 05.01.2016Нахождение интерполяционных многочленов Лагранжа и Ньютона, проходящих через четыре точки заданной функции, сравнение их степенных представлений. Решение нелинейного дифференциального уравнения методом Эйлера. Решение систем алгебраических уравнений.
задача, добавлен 21.06.2009Основные теоремы и понятия дифференциального исчисления, связи между свойствами функции и её производных (или дифференциалов); применение математических методов в естествознании и технике. Решение уравнений и неравенств с помощью теорем Ролля и Лагранжа.
курсовая работа, добавлен 09.12.2011Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.
презентация, добавлен 20.02.2015Теория задач на отыскание наибольших и наименьших величин. Достаточные условия экстремума. Решение гладкой конечномерной задачи с ограничениями типа равенств и неравенств. Конечномерная теорема об обратной функции. Доказательство теоремы Вейштрасса.
курсовая работа, добавлен 19.06.2012Составление диагональной системы способом прогонки, нахождение решения задачи Коши для дифференциального уравнения на сетке методом Эйлера и классическим методом Рунге-Кутта. Построение кубического сплайна интерполирующей функции равномерного разбиения.
практическая работа, добавлен 06.06.2011Основные сведения о симплекс-методе, оценка его роли и значения в линейном программировании. Геометрическая интерпретация и алгебраический смысл. Отыскание максимума и минимума линейной функции, особые случаи. Решение задачи матричным симплекс-методом.
дипломная работа, добавлен 01.06.2015Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.
лабораторная работа, добавлен 16.11.2015Методы построения общего решения уравнения Бернулли. Примеры решения задач с помощью него. Особое решение уравнения Бернулли и его особенности. Понятие дифференциального уравнения, его виды и свойства. Значение уравнения Бернулли в математике и физике.
курсовая работа, добавлен 25.11.2011Двойственные задачи в линейном программировании. Симметричные и несимметричные двойственные задачи. Связь исходной и двойственной задач. Анализ моделируемой ситуации (моделируемого объекта). Реализация двойственности на Visual Basic for Application.
курсовая работа, добавлен 14.10.2011Методы условной и безусловной нелинейной оптимизации. Исследование функции на безусловный экстремум. Численные методы минимизации функции. Минимизация со смешанными ограничениями. Седловые точки функции Лагранжа. Использование пакетов MS Excel и Matlab.
лабораторная работа, добавлен 06.07.2009Преимущества уравнений Лагранжа и их применение. Классификация связей внутри механической системы. Возможные перемещения механической системы и число степеней свободы. Применение уравнений Лагранжа второго рода к исследованию механической системы.
курсовая работа, добавлен 21.08.2009Ознакомление с теоремами теории аналитических функций. Определение и основные свойства индекса функции. Постановка и методы решения однородной и неоднородной задач Римана для односвязной и многосвязной областей. Принципы нахождения функции сдвига.
курсовая работа, добавлен 20.12.2011Решение задачи Коши для дифференциального уравнения. Погрешность приближенных решений. Функция, реализующая явный метод Эйлера. Вычисление погрешности по правилу Рунге. Решение дифференциальных уравнений второго порядка. Условие устойчивости для матрицы.
контрольная работа, добавлен 13.06.2012- 20. Эйлеровы графы
Основные понятия, связанные с графом. Решение задачи Эйлера о семи кёнигсбергских мостах. Необходимые и достаточные условия для эйлеровых и полуэйлеровых графов. Применение теории графов к решению задач по математике; степени вершин и подсчёт рёбер.
курсовая работа, добавлен 16.05.2016 Дифференциальное уравнение первого порядка, разрешенное относительно производной. Применение рекуррентного соотношения. Техника применения метода Эйлера для численного решения уравнения первого порядка. Численные методы, пригодные для решения задачи Коши.
реферат, добавлен 24.08.2015Физические задачи, приводящие к уравнению теплопроводности. Краевые задачи, связанные с конфигурацией тела и условиями теплообмена. Теория разностных методов решения уравнения теплопроводности, устойчивость и сходимость соответствующих разностных схем.
дипломная работа, добавлен 04.05.2011Сущность методов сведения краевой задачи к задаче Коши и алгоритмы их реализации на ПЭВМ. Применение метода стрельбы (пристрелки) для линейной краевой задачи, определение погрешности вычислений. Решение уравнения сшивания для нелинейной краевой задачи.
методичка, добавлен 02.03.2010Применение математических и вычислительных методов в планировании перевозок. Понятие и виды транспортных задач, способы их решения. Особенности постановки задачи по критерию времени. Решение транспортной задачи в Excel, настройка параметров решателя.
курсовая работа, добавлен 12.01.2011Локальные экстремумы функции. Теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа. Достаточные условия экстремума функции. Исследование функций на выпуклость и вогнутость. Точка перегиба. Асимптоты графика функции. Схема построения графика.
курс лекций, добавлен 27.05.2010