Нейронная сеть Хемминга
Программная реализация статической нейронной сети Хемминга, распознающей символы текста. Описание реализации алгоритма. Реализация и обучение сети, входные символы. Локализация и масштабирование изображения, его искажение. Алгоритм распознавания текста.
Подобные документы
Выбор типа и структуры нейронной сети. Подбор метода распознавания, структурная схема сети Хопфилда. Обучение системы распознавания образов. Особенности работы с программой, ее достоинства и недостатки. Описание интерфейса пользователя и экранных форм.
курсовая работа, добавлен 14.11.2013Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа, добавлен 18.02.2017Эффективность применения объектного подхода для программных систем. Детальное проектирование и реализация системы, реализующей процессы создания и взаимодействия объектов. Распознавание компьютером печатных букв с помощью многослойной нейронной сети.
курсовая работа, добавлен 09.03.2009Построение векторной модели нейронной сети. Проектирование и разработка поискового механизма, реализующего поиск в полнотекстовой базе данных средствами нейронных сетей Кохонена с применением модифицированного алгоритма расширяющегося нейронного газа.
курсовая работа, добавлен 18.07.2014Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа, добавлен 23.09.2013Разработка нейронной сети, ее применение в алгоритме выбора оружия ботом в трехмерном шутере от первого лица, тестирование алгоритма и выявление достоинств и недостатков данного подхода. Обучение с подкреплением. Описание проекта в Unreal Engine 4.
контрольная работа, добавлен 30.11.2016Описание структурной схемы искусственного нейрона. Характеристика искусственной нейронной сети как математической модели и устройств параллельных вычислений на основе микропроцессоров. Применение нейронной сети для распознавания образов и сжатия данных.
презентация, добавлен 11.12.2015Исследование нечеткой модели управления. Создание нейронной сети, выполняющей различные функции. Исследование генетического алгоритма поиска экстремума целевой функции. Сравнительный анализ нечеткой логики и нейронной сети на примере печи кипящего слоя.
лабораторная работа, добавлен 25.03.2014Математическая модель искусственной нейронной сети. Структура многослойного персептрона. Обучение без учителя, методом соревнования. Правило коррекции по ошибке. Метод Хэбба. Генетический алгоритм. Применение нейронных сетей для синтеза регуляторов.
дипломная работа, добавлен 17.09.2013Теоретическое исследование вопроса и практическое применение. Общие сведения о графах. Алгоритм Дейкстры. Особенности работы в среде. Программная реализация. Описание алгоритма и структуры программы. Описание программных средств. Текст программы.
курсовая работа, добавлен 27.11.2007Обучение простейшей и многослойной искусственной нейронной сети. Метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Реализация в программном продукте NeuroPro 0.25. Использование алгоритма обратного распространения ошибки.
курсовая работа, добавлен 05.05.2015Разработка криптографического алгоритма программы ручного шифра по таблице Виженера. Разработка программы, выполняющей шифрование и расшифрование. Особенности использования в качестве ключа самого открытого текста. Алгоритмы решения "обратных" задач.
курсовая работа, добавлен 13.11.2009Особенности метода неопределенных множителей Лагранжа, градиентного метода и метода перебора и динамического программирования. Конструирование алгоритма решения задачи. Структурная схема алгоритма сценария диалога и описание его программной реализации.
курсовая работа, добавлен 10.08.2014Первое систематическое изучение искусственных нейронных сетей. Описание элементарного перцептрона. Программная реализация модели распознавания графических образов на основе перцептрона. Интерфейс программы, основные окна. Составление алгоритма приложения.
реферат, добавлен 18.01.2014- 15. Надежость сети
Общее понятие графа, его виды и сущность вершинного покрытия. Написание точного алгоритма решения задачи о надежности сети, нахождение минимального покрытия. Реализация данного алгоритма на языке TurboC++. Код программы, решающий поставленную задачу.
курсовая работа, добавлен 27.06.2014 - 16. Нейронные сети
Базовые архитектуры компьютеров: последовательная обработка символов по заданной программе и параллельное распознавание образов по обучающим примерам. Искусственные нейронные сети. Прототип для создания нейрона. Поведение искусственной нейронной сети.
контрольная работа, добавлен 28.05.2010 Обучение нейронных сетей как мощного метода моделирования, позволяющего воспроизводить сложные зависимости. Реализация алгоритма обратного распространения ошибки на примере аппроксимации функции. Анализ алгоритма обратного распространения ошибки.
реферат, добавлен 09.06.2014Этап предварительной обработки данных, классификации, принятия решения. Изображения обучающих рукописных символов, тестового символа. Выход нейронной сети для тестового символа. График тренировки нейронной сети. Последовательность точек. Входные вектора.
статья, добавлен 29.09.2008Виды социальных медиа. Критерии эффективности продвижения аккаунта в социальных сетях. Программная реализация алгоритма моделирования распространения информации в социальной сети "Twitter". Разработка клиентского приложения. Апробация интерфейса системы.
дипломная работа, добавлен 08.02.2016Выявление закономерностей и свойств, применимых в искусственной нейронной сети. Построение графиков и диаграмм, определяющих степень удаленности между объектами. Моделирование, тестирование и отладка программной модели, использующей клеточный автомат.
дипломная работа, добавлен 25.02.2015Понятие социальной сети, определение основных целей и задач ее создания, распространенность и значение в современном обществе. Модели влияния в социальных сетях. Выбор средств проектирования и программная реализация, разработка и реализация интерфейса.
дипломная работа, добавлен 11.09.2012Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа, добавлен 05.10.2010Изучение и реализация системы, использующей возможности Microsoft Azure для распределенного обучения нейронной сети. Рассмотрение функционирования распределенных вычислений. Выбор задачи для исследования; тестирование данного программного ресурса.
дипломная работа, добавлен 20.07.2015Проблема гидроакустической классификации целей как актуальная проблема современной гидроакустики. Применение нейросетевых алгоритмов и отдельных парадигм для решения научно-технических задач. Выбор структуры нейронной сети для распознавания изображений.
реферат, добавлен 04.05.2012Оптимизация показателей эффективности функционирования технологического контура системы управления космическим аппаратом, исследование свойств его показателей. Настройка нейронной сети, гибридизация генетического алгоритма с алгоритмами локального поиска.
дипломная работа, добавлен 02.06.2011