Понятие симметрии
Понятие симметрии в математике, ее виды: поступательная, вращательная, осевая, центральная. Примеры симметрии в биологии. Ее проявления в химии в геометрической конфигурации молекул. Симметрия в искусствах. Простейший пример физической симметрии.
Подобные документы
- 26. Движение
Понятие движения как преобразования одной фигуры в другую при сохранении расстояния между точками. Характеристика видов движения (центральная и осевая симметрия, поворот и параллельный перенос). Переход фигуры в равную ей фигуру, сохранение углов.
презентация, добавлен 09.03.2012 Использование принципов "золотого сечения" в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; "математика гармонии".
реферат, добавлен 24.11.2009Эвристика и особенности применения эвристики в математике. Понятие доказательства в математике. Эвристика как метод научного познания. Эвристический подход к построению математических доказательств в рамках логического подхода, при доказательстве теорем.
курсовая работа, добавлен 30.01.2009- 29. Теория узлов
История возникновения и развития теории узлов. Плоские диаграммы узлов и зацеплений. Характеристика инварианта раскрасок, полинома Конвея и d-диаграммы как основных способов задания узлов. Применение узлов в математике, биологии, физике и химии.
курсовая работа, добавлен 10.06.2014 Пример решения задачи на нахождение корня уравнения. Определение веса бетонного шара. Коэффициент полезного действия: понятие, формула. Нахождение значения функции. Плоскость основания цилиндра. Угол между плоскостью сечения и основания цилиндра.
контрольная работа, добавлен 27.12.2013Методы построения общего решения уравнения Бернулли. Примеры решения задач с помощью него. Особое решение уравнения Бернулли и его особенности. Понятие дифференциального уравнения, его виды и свойства. Значение уравнения Бернулли в математике и физике.
курсовая работа, добавлен 25.11.2011Определение и этапы доказательства теоремы Штольца, ее теоретическое и практическое значение в прикладной математике, применение. Понятие предела последовательности, характерные примеры вычисления пределов последовательности с подробным разбором решения.
курсовая работа, добавлен 28.02.2010Определение случайного процесса в математике, ряд терминов и понятий, описывающих механизм этого процесса. Марковские, стационарные случайные процессы с дискретными состояниями. Особенности эргодического свойства стационарных случайных процессов.
реферат, добавлен 15.05.2010Определение пирамиды как геометрической фигуры, ее виды. Проекция треугольной пирамиды. Основные свойства полной и усеченной пирамиды, нахождение площади и объема, плоские сечения. Пример построения сечения пирамиды с плоскостью по заданным параметрам.
практическая работа, добавлен 16.06.2009Усвоение знаний, умений и навыков. Понятие и сущность знаний. Сущность умений и навыков. Проверка и учет знаний, умений и навыков учащихся по математике в начальных классах. Роль и функции проверки. Способы проверки и учета знаний, умений по математике.
курсовая работа, добавлен 09.10.2008- 36. Базисные сплайны
Определение сплайна степени n дефекта. Простейший пример сплайна - единичная функция Хевисайда. Теорема о линейно независимых функциях и ее доказательство. Базисные сплайны с конечными носителями. Тождество Лемма. Представление многочленов сплайнами.
курсовая работа, добавлен 19.12.2010 Повторение и обобщение типов задач, в том числе фигур сложной геометрической конфигурации. Классификация задач, систематизация способов решения. Развитие коммуникативных компетенций (умения работать в группе). Развитие интеллектуальной деятельности.
презентация, добавлен 29.05.2019Теоретические основы учебных исследований по математике с использованием динамических моделей. Содержание динамических чертежей. Гипотезы о свойствах заданной геометрической ситуации. Проектирование процесса обучения геометрии в общеобразовательной школе.
курсовая работа, добавлен 26.11.2014Основная идея метода конечных элементов. Пространство конечных элементов. Простейший пример пространства. Однородные граничные условия и функции. Построение базисов в пространствах. Свойства базисных функций. Коэффициенты системы Ритца–Галеркина.
лекция, добавлен 30.10.2013Плоскость как простейший вид поверхности, ее задание тремя точками. Основные геометрические фигуры на плоскости. Определение геометрического места точек, примеры для угла и окружности. Сущность использования метода геометрических мест при решении задач.
курсовая работа, добавлен 10.01.2010Свойство, устранение и объяснение парадоксов в математике. Логический парадокс "Лжец" Эвбулида из Милета (IV в. до н.э.). Парадокс Греллинга, связанный с прилагательными. Парадоксы с множествами, парадоксы-петли. Проблемы парадоксов в математике.
контрольная работа, добавлен 30.01.2010Понятие множества, его трактование Георгом Кантором. Условные обозначения множеств. Виды множеств, способы их задания. Операции над множествами (пересечение, объединение, разность и дополнение), условия их равенства и основные свойства, отношения.
презентация, добавлен 12.12.2012Непрерывность функции: определение, практические примеры, график, приращение. Точка разрыва первого и второго рода функции, примеры. Бесконечность односторонних пределов функции. Практический пример отложения точки разрыва второго рода на графике.
презентация, добавлен 21.09.2013- 44. Функции
Множество: понятие, элементы, примеры. Разность двух множеств, их пересечение. Множество действительных, рациональных, иррациональных, целых и натуральных чисел, особенности изображения их на прямой. Общее понятие о взаимно однозначном соответствии.
презентация, добавлен 21.09.2013 Векторы и основные линейные операции над ними. Понятие о скалярной величине, сложение и вычитание. Векторное произведение: понятие, свойства, особенности определения. Пример вычисления двойного векторного произведения. Доказательство тождества Лагранжа.
контрольная работа, добавлен 26.11.2013- 46. Метод Гомори
Задача целочисленного линейного программирования, приведение к канонической форме. Общие идеи методов отсечения. Алгоритм Гомори для решения целочисленных задач линейного программирования. Понятие правильного отсечения и простейший способ его построения.
курсовая работа, добавлен 25.11.2011 Алгоритм решения задач по теме "Матрицы". Исследование на совместность системы линейных алгебраических уравнений, пример их решения по правилу Крамера. Определение величины угла при вершине в треугольнике, длины вектора. Исследование сходимости рядов.
контрольная работа, добавлен 19.03.2011- 48. Параллелепипед
Понятие, свойства, признаки и типы параллелепипеда как геометрической фигуры. Формулы расчета площади поверхности и объема параллелепипеда и куба. Определение высоты, общей длины ребер, суммы площадей наибольшей и наименьшей граней параллелепипеда.
презентация, добавлен 06.12.2011 Понятие первообразной функции. Виды иррациональных функций, приемы их интегрирования. Интегрирование рациональных дробей, алгебраических иррациональностей, биномиальных дифференциалов, тригонометрические подстановки. Примеры решения типовых задач.
курсовая работа, добавлен 07.06.2012Определение, типы и примеры отношений, способы их задания; алгебраическая и геометрическая интерпретации. Разбиение на классы и фактор-множество. Смысл отношения эквивалентности. Теорема о равносильности определений. Отношения в школьной математике.
курсовая работа, добавлен 01.10.2011