Эвклидова геометрия
Эвклид — древнегреческий математик Александрийской школы, автор первого из дошедших до нас теоретических трактатов по математике. Элементарная (Эвклидова) геометрия — теория, основанная на системе аксиом и постулатов, впервые изложенных в "Началах".
Подобные документы
Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.
учебное пособие, добавлен 09.03.2009Содержание и методика преподавания математики в сельской школе. Факультатив, как одна из форм проведения внеклассной работы по геометрии. Факультативные занятия по теме "Решение задач на местности". Задачи на местности для учащихся сельской школы.
дипломная работа, добавлен 01.12.2007Зависимость строения пленки и поверхностного натяжения. Решение задачи Плато для сложного контура. Принцип минимума энергии. Теория многогранников. Особенности строения контуров и натяжения мыльных пленок. Изучение строения мыльной пены в геометрии.
презентация, добавлен 24.04.2016Диофант Александрийский - древнегреческий математик и одна из загадок в истории математики. Диофантовы уравнения как математическая модель жизненных ситуаций. Задачи на разложение числа. Китайская теорема об остатках. Десятая проблема Гильберта.
реферат, добавлен 22.06.2014- 55. Труды Эйлера
Леонард Эйлер — швейцарский, немецкий и российский математик; биография, вклад в развитие механики, физики, астрономии; автор исследований по математическому анализу, дифференциальной геометрии, приближённым вычислениям, кораблестроению, теории музыки.
реферат, добавлен 22.12.2011 Структура программы по математике для учащихся третьего класса. Концепция построения учебного материала. Диалектические приемами формирования умственных действий: объединение, обращение, смена альтернативы, поиск связей, зависимостей и закономерностей.
лекция, добавлен 06.03.2009Понятие и свойства многогранников. Геометрическое моделирование как неотъемлемая часть современного математического образования. Применение изображений пространственных фигур в преподавании геометрии, роль наглядных средств при изучении многогранников.
дипломная работа, добавлен 28.10.2012- 58. Выпуклые фигуры
Выпуклая геометрия в трудах О. Коши, Я. Штейнера и Г. Минковского. Кривые постоянной ширины и их применение. Свойства кривых постоянной ширины. линейное программирование. значение выпуклых экстремальных задач.
курсовая работа, добавлен 04.09.2007 - 59. Геометрия
Аксиомы стереометрии, простейшие следствия. Параллельность прямых и плоскостей. Перпендикулярность прямых, плоскостей. Декартовы координаты и векторы в пространстве. Доказательство того, что через две скрещивающиеся можно провести параллельные плоскости.
книга, добавлен 12.02.2009 Предмет и задачи планиметрии, как раздела геометрии, в котором изучаются такие фигуры на плоскости, как точка, прямая, параллелограмм, трапеция, окружность и треугольник. Аксиомы принадлежности, расположения, измерения, откладывания, параллельности.
презентация, добавлен 22.10.2013Определение понятия элементарной, простой и общей поверхности. Аналитическое задание и специальные параметризации поверхности. Первая квадратичная форма поверхности, расчет кривых и угла между ними. Конформное отображение, изометрические площади.
курсовая работа, добавлен 15.12.2011Использование разнообразных геометрических форм в современной архитектуре. Геометрические формы в разных архитектурных стилях. Изучение связи геометрии и архитектуры. Определение соответствия архитектурных зданий и сооружений геометрическим телам.
презентация, добавлен 23.09.2019Расчет эффективности ведения многоотраслевого хозяйства, отображение связей между отраслями в таблицах балансового анализа. Построение линейной математической модели экономического процесса, приводящей к понятию собственного вектора и значения матрицы.
реферат, добавлен 17.01.2011Вычисление определителей матриц. Метод приведения матрицы к треугольному виду. Решение системы уравнений методами Крамера, Жордана-Гауса и матричным. Канонические уравнения для нахождения центра, вершины, полуоси, эксцентриситета, директрис эллипса.
контрольная работа, добавлен 18.11.2013Из истории геометрии, науки об измерении треугольников. Замечательные точки треугольника. Использование геометрических фигур в орнаментах древних народов. Бильярдная рамка, расстановка кеглей в боулинге. Бермудский треугольник. Построения прямых углов.
презентация, добавлен 02.10.2011- 66. Пчелиные соты
Варианты выбора геометрической фигуры для заполнения плоскости "без просветов". Задача царицы Дидоны. Геометрия воскового кружева пчелиных сот. Модель пчелиной соты. Использование математических принципов "пчелиной" технологии в различных областях.
реферат, добавлен 06.12.2013 Метод координат как глубокий и мощный аппарат. Основные особенности декартовых координат на прямой, на плоскости и в пространстве. Понятие вектора как направленного отрезка. Рассмотрение координат вектора и важнейших в аналитической геометрии вопросов.
курсовая работа, добавлен 27.08.2012Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.
курсовая работа, добавлен 24.11.2009Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.
реферат, добавлен 16.01.2010Знакомство с Пьером де Ферма - французским математиком, одним из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. Разработка способов систематического нахождения всех делителей числа. Великая теорема Ферма.
презентация, добавлен 16.12.2011Решение системы трех уравнений с тремя неизвестными при помощи определителей. Исследование системы на совместность, составление канонического уравнения эллипса. Изучение функции методами дифференциального исчисления, поиск точки разрыва функции.
контрольная работа, добавлен 16.04.2010Исследование теоретического материала, касающегося задач, решаемых ограниченными средствами. Сущность и содержание теоремы Штейнера – Понселе. Задачи школьного курса геометрии, решаемые циркулем и линейкой, их исследование и методика разрешения.
курсовая работа, добавлен 04.11.2015Элементы аналитической геометрии и линейной алгебры. Методы построения графика функции. Предел и непрерывность функции. Дифференциальное исчисление функции одной переменной. Определители и системы уравнений. Построение прямой и плоскости в пространстве.
методичка, добавлен 24.08.2009Значение понятия математика. Ее роль в науке. Математика как наука основанная на разнообразие математических моделей, задачей которых является отображение реальных событий и явлений. Особенности математического языка. Известные высказывания о математике.
реферат, добавлен 07.05.2013Краткие биографические сведения и характеристика творчества В.Я. Буняковского - знаменитого русского математика. Исследования Буняковского в области теории чисел. Работы по геометрии и прикладным вопросам. Научное наследство великого математика.
реферат, добавлен 29.05.2010