Векторы, пространства, гиперплоскости, гиперповерхности
Системы линейных уравнений и интерпретация их решений как пересечение гиперплоскостей в n-мерном координатном пространстве. Размерность и подпространства линейного пространства. Оптимизационные задачи линейного программирования. Суть симплекс-метода.
Подобные документы
Общий вид системы линейных уравнений и ее основные понятия. Правило Крамера и особенности его применения в системе уравнений. Метод Гаусса решения общей системы линейных уравнений. Использование критерия совместности общей системы линейных уравнений.
контрольная работа, добавлен 24.06.2009Понятие и специфические черты системы линейных алгебраических уравнений. Механизм и этапы решения системы линейных алгебраических уравнений. Сущность метода исключения Гаусса, примеры решения СЛАУ данным методом. Преимущества и недостатки метода Гаусса.
контрольная работа, добавлен 13.12.2010Решение задачи об оптимальном направлении капиталовложений в строительную отрасль и оптимизации поставки грузов. Применение симплекс-метода для оптимальной организации ремонтно-строительных работ. Изучение методов динамического программирования.
контрольная работа, добавлен 08.01.2011Развитие численных линейных методов решения задач линейного программирования. Знакомство с методами поиска целевой функции: равномерный симплекс, методы Коши, Ньютона, сопряжённого градиенты, квазиньютоновский метод. Алгоритмы нахождения экстремума.
курсовая работа, добавлен 12.07.2012Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.
курсовая работа, добавлен 24.11.2013Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.
дипломная работа, добавлен 17.05.2010Сущность линейного программирования. Изучение математических методов решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейной целевой функцией. Нахождение точек наибольшего или наименьшего значения функции.
реферат, добавлен 20.05.2019Характеристика способов решения систем линейных алгебраических уравнений (СЛАУ). Описание проведения вычислений на компьютере методом Гаусса, методом квадратного корня, LU–методом. Реализация метода вращений средствами системы программирования Delphi.
курсовая работа, добавлен 04.05.2014Действие оператора точечной группы в двух- и трехмерном пространстве. Определение его порядка по матрице Система эквивалентных точек. Возможные порядки осей симметрии в кристаллографическом пространстве. Геометрическая интерпретация сложения операторов.
презентация, добавлен 23.09.2013Сущность графического метода нахождения оптимального значения целевой функции. Особенности и этапы симплексного метода решения задачи линейного программирования, понятие базисных и небазисных переменных, сравнение численных значений результатов.
задача, добавлен 21.08.2010Графическое решение задачи линейного программирования. Общая постановка и решение двойственной задачи (как вспомогательной) М-методом, правила ее формирования из условий прямой задачи. Прямая задача в стандартной форме. Построение симплекс таблицы.
задача, добавлен 21.08.2010Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.
дипломная работа, добавлен 10.06.2010Решение системы линейных уравнений методами Крамера, Гаусса (посредством преобразований, не изменяющих множество решений системы), матричным (нахождением обратной матрицы). Вероятность оценки события. Определение предельных вероятностей состояний системы.
контрольная работа, добавлен 26.02.2012- 39. Метод Гомори
Задача целочисленного линейного программирования, приведение к канонической форме. Общие идеи методов отсечения. Алгоритм Гомори для решения целочисленных задач линейного программирования. Понятие правильного отсечения и простейший способ его построения.
курсовая работа, добавлен 25.11.2011 Статистический подход к измерению правовой информации. Графический метод решения задач линейного программирования. Методика решения задач линейного программирования графическим методом. Количество информации как мера неопределенности состояния системы.
контрольная работа, добавлен 04.06.2010Нахождение собственных значений и векторов линейного преобразования, заданных в некотором базисе матрицей. Составление характеристического уравнения и нахождение семейства векторов и их значения при решении, корни характеристического уравнения.
контрольная работа, добавлен 29.05.2012Понятие и виды задач математического линейного и нелинейного программирования. Динамическое программирование, решение задачи средствами табличного процессора Excel. Задачи динамического программирования о выборе оптимального распределения инвестиций.
курсовая работа, добавлен 21.05.2010Различные способы задания прямой на плоскости и в пространстве. Конструктивные задачи трехмерного пространства. Изображения фигур и их правильное восприятие и чтение. Использование в геометрии монографического и математического метода исследования.
курсовая работа, добавлен 22.09.2014Проверка совместности системы уравнений, ее решение матричным методом. Координаты вектора в четырехмерном пространстве. Решение линейных неравенств, определяющих внутреннюю область треугольника. Определение пределов, производных; исследование функции.
контрольная работа, добавлен 21.05.2013Понятие нормированного пространства. Пространства суммируемых функций. Интеграл Лебега-Стилтьеса. Интерполяция в пространствах суммируемых функций. Теорема Марцинкевича и ее применение. Пространства суммируемых последовательностей.
дипломная работа, добавлен 08.08.2007Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.
реферат, добавлен 14.08.2009Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
контрольная работа, добавлен 24.10.2010Основные понятия и теоремы систем линейных уравнений, характеристика методов их решения. Критерий совместности общей системы. Структура общих решений однородной и неоднородной систем. Матричный метод решения и обобщение. Методы Крамера и Гаусса.
курсовая работа, добавлен 13.11.2012- 49. Линейная алгебра
Ознакомление с основами метода Гаусса при решении систем линейных уравнений. Определение понятия ранга матрицы. Исследование систем линейных уравнений; особенности однородных систем. Рассмотрение примера решения данной задачи в матрической форме.
презентация, добавлен 14.11.2014 Особенности неподвижного геометрического трехмерного пространства, его отличительные признаки от подвижного пространства. Отличия физической сущности скорости от математической. Понятие производной вектора по времени, методика и этапы ее определения.
статья, добавлен 25.12.2010