Определители

Определители второго и третьего порядка. Перестановки и подстановки. Миноры и алгебраические дополнения. Применение методов приведения определителя к треугольному виду, представления определителя в виде суммы определителей, выделения линейных множителей.

Подобные документы

  • Основные правила решения системы заданных уравнений методом Гаусса с минимизацией невязки и методом простых итераций. Понятие исходной матрицы; нахождение определителя для матрицы коэффициентов. Пример составления блок-схемы метода минимизации невязок.

    лабораторная работа, добавлен 24.09.2014

  • Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.

    реферат, добавлен 10.11.2009

  • Решение системы уравнений по формулам Крамера, методом обратной матрицы и методом Гаусса. Преобразование и поиск общего определителя. Преобразование системы уравнений в матрицу и приведение к ступенчатому виду. Алгебраическое дополнение элемента.

    контрольная работа, добавлен 15.01.2014

  • Линейные однородные дифференциальные уравнения второго порядка, общий вид. Линейная зависимость векторов и функций. Определитель Вронского, практические примеры его нахождения. Неоднородные уравнения второго порядка, теорема и доказательство, решение.

    презентация, добавлен 17.09.2013

  • Решение системы методом Гаусса. Составление расширенной матрицу системы. Вычисление производной сложной функции, определенного и неопределенного интегралов. Область определения функции. Приведение системы линейных уравнений к треугольному виду.

    контрольная работа, добавлен 27.04.2014

  • Применение матриц и их виды (равные, квадратные, диагональные, единичные, нулевые, вектор-строка, вектор-столбец). Примеры действий над матрицами (умножение на число, сложение, вычитание, умножение и транспонирование матриц) и свойства полученных матриц.

    презентация, добавлен 21.09.2013

  • Общее уравнение кривой второго порядка, преобразование систем координат. Классификация кривых по инвариантам, исследование уравнения кривой второго порядка. Изучение и примеры исследования инвариант поворота и параллельного переноса систем координат.

    курсовая работа, добавлен 28.09.2019

  • Эллипс, гипербола, парабола как кривые второго порядка, применяемые в высшей математике. Понятие кривой второго порядка - линии на плоскости, которая в некоторой декартовой системе координат определяется уравнением. Теоремма Паскамля и теорема Брианшона.

    реферат, добавлен 26.01.2011

  • Метод Гаусса - последовательное исключение переменных из системы уравнений. Определение понятия расширенной матрицы. Метод Крамера, расчет определителя системы. Метод обратной матрицы. Расчет алгебраических дополнений для элементов полученной матрицы.

    презентация, добавлен 21.09.2013

  • Доказательство теоремы единственности для кривых второго порядка. Преимущества и недостатки разных способов доказательства теоремы единственности. Пучок кривых второго порядка. Методы решения теоремы единственности для поверхностей второго порядка.

    курсовая работа, добавлен 22.01.2011

  • Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.

    курсовая работа, добавлен 28.06.2009

  • Математическое понятие кривой. Общее уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы. Оси симметрии гиперболы. Исследование формы параболы. Кривые третьего и четвертого порядка. Анъези локон, декартов лист.

    дипломная работа, добавлен 14.10.2011

  • Приемы и методы качественной теории дифференциальных уравнений на плоскости. Визуализация и анализ инвариантных множеств динамических систем. Теорема о существовании четырех линий равновесия. Первый интеграл. Решение системы первого и второго порядка.

    курсовая работа, добавлен 02.04.2016

  • Обзор применения аппарата разностных уравнений в экономической сфере. Построение моделей динамики выпуска продукции фирмы на основе линейных разностных уравнений второго порядка. Анализ модели рынка с запаздыванием сбыта, динамической модели Леонтьева.

    практическая работа, добавлен 11.01.2012

  • Понятие линейных и нелинейных списков, иерархическое упорядочение элементов. Дерево - нелинейная структура, состоящая из узлов и ветвей и имеющая направление от корня к внешним узлам. Разработка программы представления бинарных деревьев в виде массива.

    курсовая работа, добавлен 27.04.2011

  • Алгоритм вычисления интегральной суммы для функции нескольких переменных по кривой АВ. Определение понятия криволинейного интеграла второго рода. Представление суммы интегралов двух функций вдоль кривой АВ как криволинейного интеграла общего вида.

    презентация, добавлен 17.09.2013

  • Элементы аналитической геометрии и линейной алгебры. Методы построения графика функции. Предел и непрерывность функции. Дифференциальное исчисление функции одной переменной. Определители и системы уравнений. Построение прямой и плоскости в пространстве.

    методичка, добавлен 24.08.2009

  • Изучение булевых функций. Алгоритм представления булевых функций в виде полинома Жегалкина. Система функций множества. Алгебраические преобразования, метод неопределенных коэффициентов. Таблица истинности для определенного количества переменных.

    курсовая работа, добавлен 27.04.2011

  • Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.

    презентация, добавлен 26.01.2015

  • Вычисление градиента, дивергенции и ротора однократным дифференцированием функций. Дифференциальные операций и операторы второго порядка. Выполнение условий дифференцируемости и непрерывности. Оператор Лапласа, градиент дивергенции, формулы Грина.

    реферат, добавлен 21.03.2014

  • Метод замены переменной при решении задач. Тригонометрическая подстановка. Решение уравнений. Решение систем. Доказательство неравенств. Преподавание темы "Применение тригонометрической подстановки для решения алгебраических задач".

    дипломная работа, добавлен 08.08.2007

  • Сущность понятия "комбинаторика". Историческая справка из истории развития науки. Правило суммы и произведения, размещения и перестановки. Общий вид формулы для вычисления числа сочетаний с повторениями. Пример решения задач по теории вероятностей.

    контрольная работа, добавлен 30.01.2014

  • Параллельные методы решения систем линейных уравнений с ленточными матрицами. Метод "встречной прогонки". Реализация метода циклической редукции. Применение метода Гаусса к системам с пятидиагональной матрицей. Результаты численного эксперимента.

    курсовая работа, добавлен 21.10.2013

  • Решение системы линейных уравнений по методу определителей, методом исключения (Гаусса), по методу Жордана и Холецкого. Определение недостатков и достоинств всех методов. Условия совместности и определенности системы в зависимости от коэффициентов.

    контрольная работа, добавлен 02.05.2012

  • Уравнение прямой линии на плоскости, условия перпендикулярности плоскостей. Вычисления для векторов и их значение, нахождение скалярных произведений, обратная матрица к квадратной матрице и вычисление определителя, бесконечные системы и их признаки.

    тест, добавлен 08.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.