Множества в математике
Понятие множества, его трактование Георгом Кантором. Условные обозначения множеств. Виды множеств, способы их задания. Операции над множествами (пересечение, объединение, разность и дополнение), условия их равенства и основные свойства, отношения.
Подобные документы
Упорядоченные множества. Решётки. Дистрибутивные решётки. Обобщённые булевы решётки, булевы решётки. Идеалы. Конгруэнции. Основная теорема. Установление взаимно однозначного соответствия между конгруэнциями и идеалами.
дипломная работа, добавлен 08.08.2007Понятие матрицы и линейные действия над ними. Свойства операции сложения матриц. Определители второго и третьего порядков. Применение правила Саррюса. Основные методы решения определителей. Элементарные преобразования матрицы. Свойства обратной матрицы.
учебное пособие, добавлен 04.03.2010- 103. Случайные величины
Понятие и направления исследования случайных величин в математике, их классификация и типы: дискретные и непрерывные. Их основные числовые характеристики, отличительные признаки и свойства. Законы распределения случайных величин, их содержание и роль.
презентация, добавлен 19.07.2015 Выпуклые многогранники и их "ежи". Понятие опорной плоскости и ее свойства. Пересечение конечного числа полупространств. Множество векторов в пространстве. Многогранники с центрально-симметричными гранями и центрально-симметричные многогранники.
презентация, добавлен 22.04.2013Теория вероятностей и математическая статистика являются науками о методах количественного анализа массовых случайных явлений. Множество значений случайной величины называется выборкой, а элементы множества – выборочными значениями случайной величины.
реферат, добавлен 26.12.2008Равномерное распределение случайной величины. График плотности вероятности. Сущность вычисления математического ожидания и дисперсии. Случайная величина, которая в зависимости от исхода испытания случайно принимает одно из множества возможных значений.
презентация, добавлен 01.11.2013Понятие ранга матрицы. Модель Леонтьева многоотраслевой экономики. Свойства скалярного произведения. Разложение вектора по координатным осям. Минор и алгебраическое дополнение. Определители второго и третьего порядка. Плоскость и прямая в пространстве.
курс лекций, добавлен 30.10.2013- 108. Пределы
Определение корня первого и второго многочлена, вычисление предела функции. Применение правила Лопиталя (предел отношения функций равен пределу отношения их производных). Пример использования замечательного предела, который применяется в виде равенства.
контрольная работа, добавлен 19.03.2015 Математическое представление, условия возрастания и убывания функции y=f(x); характеристика ее основных свойств - четности, монотонности, ограниченности и периодичности. Ознакомление с аналитическим, графическим и табличным способами задания функции.
презентация, добавлен 21.09.2013Применение метода интервалов для решения неравенств. Формула перехода от простейшего логарифмического неравенства к двойному. Формула решения тригонометрического уравнения. Нахождение множества всех первообразных функции f(x) на области определения.
контрольная работа, добавлен 03.06.2010Методика решения задач высшей математики с помощью теории графов, ее сущность и порядок разрешения. Основная идея метода ветвей и границ, ее практическое применение к задаче. Разбиение множества маршрутов на подмножества и его графическое представление.
задача, добавлен 24.07.2009- 112. Полином Жегалкина
Изучение булевых функций. Алгоритм представления булевых функций в виде полинома Жегалкина. Система функций множества. Алгебраические преобразования, метод неопределенных коэффициентов. Таблица истинности для определенного количества переменных.
курсовая работа, добавлен 27.04.2011 - 113. Теорема Силова
Доказательство первой, второй и третей теоремы Силова. Описание групп порядка pq. Смежные классы по подгруппе и теорема Лагранжа. Классы сопряженных элементов. Нормализатор множества в группе. Теоремы о гомоморфизмах. Примеры силовских подгрупп.
курсовая работа, добавлен 21.04.2011 Доказательство тождества с помощью диаграмм Эйлера-Венна. Определение вида логической формулы с помощью таблицы истинности. Рисунок графа G (V, E) с множеством вершин V. Поиск матриц смежности и инцидентности. Определение множества вершин и ребер графа.
контрольная работа, добавлен 17.05.2015Приближение действительных чисел конечными десятичными дробями. Действия над комплексными числами. Свойства функции и способы ее задания. Тригонометрические функции числового аргумента. Частные случаи тригонометрических уравнений, аксиомы стереометрии.
шпаргалка, добавлен 29.06.2010Разработка логико-формальной модели описания методики изготовления винных изделий. Разделение ингредиентов и продукции на множества. Исследование на рефлексивность, транзитивность, симметричность. Построение графа, матрицы смежности и инцидентности.
контрольная работа, добавлен 07.06.2010Векторы и основные линейные операции над ними. Понятие о скалярной величине, сложение и вычитание. Векторное произведение: понятие, свойства, особенности определения. Пример вычисления двойного векторного произведения. Доказательство тождества Лагранжа.
контрольная работа, добавлен 26.11.2013Основные понятия теории графов. Матричные способы задания графов. Выбор алгоритма Форда–Бэллмана для решения задачи поиска минимальных путей (маршрутов) в любую достижимую вершину нагруженного орграфа. Способы выделения пути с наименьшим числом дуг.
курсовая работа, добавлен 22.01.2016Понятие и основные свойства вложимой системы, необходимые условия вложимости и методы решения системы. Нахождение первого интеграла дифференциальной системы и условия его существования. Применение теоремы об эквивалентности дифференциальных систем.
курсовая работа, добавлен 21.08.2009- 120. Операции с матрицами
Изучение понятий, действий (сумма, разность, произведение), свойств квадратной матрицы. Определение и признаки ранга матрицы. Анализ методов окаймляющих миноров и преобразований. Расчет системы линейных уравнений согласно методам Крамера и матричному.
реферат, добавлен 01.02.2010 Предел отношения приращения функции к приращению независимого аргумента, когда приращение аргумента стремится к нулю. Обозначения производной. Понятие дифференцирования функции производной и ее геометрический смысл. Уравнение касательной к кривой.
презентация, добавлен 21.09.2013Зависимость переменной у от переменной x. Способы задания функции. Степенная функция с целым отрицательным показателем, с положительным дробным показателем. Положительная несократимая дробь. Прямая пропорциональность и коэффициент пропорциональности.
реферат, добавлен 24.09.2014- 123. Теория узлов
История возникновения и развития теории узлов. Плоские диаграммы узлов и зацеплений. Характеристика инварианта раскрасок, полинома Конвея и d-диаграммы как основных способов задания узлов. Применение узлов в математике, биологии, физике и химии.
курсовая работа, добавлен 10.06.2014 - 124. Многочлены
Многочлен как сумма или разность одночленов. Запись многочлена в стандартном виде. Операции при сложении и вычитании многочленов. Умножение многочлена на одночлен. Деление многочлена на одночлен. Разложение многочлена на множители, метод группировки.
презентация, добавлен 26.02.2010 Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.
курс лекций, добавлен 23.04.2011