Из истории дробей

Особенности возникновения и использования дробей в Египте. Особенности применения шестидесятеричных дробей в Вавилоне, греческими и арабскими математиками и астрономами. Отличительные черты дробей в Древнем Риме и Руси. Дробные числа в современном мире.

Подобные документы

  • Понятие функции в древнем мире: Египет, Вавилон, Греция. Графическое изображение зависимостей, история возникновения. Вклад в развитие графиков функций Рене Декартом. Определение функций: понятие и способы задания. Методы построения графиков функций.

    реферат, добавлен 09.05.2009

  • История развития формул корней квадратных уравнений. Квадратные уравнения в Древнем Вавилоне. Решение квадратных уравнений Диофантом. Квадратные уравнения в Индии, в Хорезмии и в Европе XIII - XVII вв. Теорема Виета, современная алгебраическая запись.

    контрольная работа, добавлен 27.11.2010

  • Роль математики в современном мире. Основные этапы развития математики. Аксиоматический метод построения научной теории. Начала Евклида как образец аксиоматического построения научной теории. История создания неевклидовой геометрии. Стили мышления.

    реферат, добавлен 08.02.2009

  • Письменная история числа "пи", происхождение его обозначения и "погоня" за десятичными знаками. Определение числа "пи" как отношения длины окружности к её диаметру. История числа "е", мнемоника и мнемоническое правило, числа с собственными именами.

    реферат, добавлен 28.11.2010

  • Порядок проведения эксперимента "Иллюзии зрения", его сущность и содержание. Постулаты Евклидовой геометрии. Аксиомы геометрии Лобачевского. Сравнительный анализ двух геометрий, их отличительные и сходные черты, особенности преподнесения, доказательства.

    презентация, добавлен 24.02.2011

  • Определение числа e, вычисление его приближенного значения и его трансцендентность. Анализ формул числа е с помощью рядов и пределов функции. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.

    курсовая работа, добавлен 17.05.2021

  • Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").

    презентация, добавлен 16.12.2011

  • Изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности. Описание геометрических законов и сущность геометрических построений. Графическое образование и его место в современном мире.

    дипломная работа, добавлен 24.06.2010

  • Понятие и история возникновения науки нумерологии, особенности русской и китайской нумерологии. Разработка основных положений нынешнего варианта западной нумерологии Пифагором, гармонические числа. Пифагорейская наука о числах. Халдейская нумерология.

    реферат, добавлен 20.12.2009

  • Математика как одна из самых древних и консервативных наук. Понятие числа, построение их множеств, особенности натуральных чисел, представление иррациональных чисел. Смысл категории "пространство", последствия применения некорректных методов познания.

    статья, добавлен 28.07.2010

  • Число Пи как математическая константа. Основные особенности вычисления числа Пи. Методы определения численного значения числа Пи. Влияние трудов И. Ньютона и Г. Лейбница на ускорение вычисления приближенных значений Пи. Анализ формул древних ученных.

    курсовая работа, добавлен 26.09.2012

  • Понятие и отличительные особенности численных методов решения, условия и возможности их применения. Оптимизация функции одной переменной, используемые методы и закономерности их комбинации, сравнение эффективности. Сущность и разновидности интерполяции.

    реферат, добавлен 29.06.2015

  • Понятие и математическое содержание систем счисления, их разновидности и сферы применения. Отличительные признаки и особенности позиционных и непозиционных, двоичных и десятичных систем счисления. Порядок перевода чисел из одной системы в другую.

    презентация, добавлен 10.11.2010

  • Структура и принципы решения линейных уравнений. Метод Крамера и Гаусса, Ньютона, половинного деления, секущих. Отличительные особенности и условия применения графического метода. Содержание теоремы Штурма. Принципы и основные этапы поиска интервалов.

    реферат, добавлен 30.03.2019

  • Развитие математики в древнем Китае со II в. до н.э. по VII в.н.э. Древнее математическое "Десятикнижье". Зарождение группового десятичного счёта и мультипликативного принципа фиксирования чисел в эпоху Инь. Классическая "Математика в девяти книгах".

    реферат, добавлен 09.11.2010

  • Проблема решения уравнений в целых числах: от Диофанта до доказательства теоремы Ферма. Сущность теоремы о делимости данного числа на произведение двух взаимно простых чисел, особенности ее применения к решению неопределенных уравнений в целых числах.

    курсовая работа, добавлен 10.03.2014

  • История возникновения, основные понятия графа и их пояснение на примере. Графический или геометрический способ задания графов, понятие смежности и инцидентности. Элементы графа: висячая и изолированная вершины. Применение графов в повседневной жизни.

    курсовая работа, добавлен 20.12.2015

  • Комплексные числа в алгебраической форме. Степень мнимой единицы. Геометрическая интерпретация комплексных чисел. Тригонометрическая форма. Приложение теории комплексных чисел к решению уравнений 3-й и 4-й степени. Комплексные числа и параметры.

    дипломная работа, добавлен 10.12.2008

  • Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.

    курсовая работа, добавлен 15.06.2011

  • Разработка индийскими математиками метода, позволяющего быстро находить простое число. Биография Эратосфена - греческого математика, астронома, географа и поэта. Признаки делимости чисел. Решето Эратосфена как алгоритм нахождения всех простых чисел.

    практическая работа, добавлен 09.12.2009

  • Особенности применения функций Ляпунова для исследования устойчивости различных дифференциальных уравнений и систем. Алгоритм и листинг программы определения устойчивости матрицы на основе использования метода Раусса-Гурвица в среде моделирования Matlab.

    реферат, добавлен 23.10.2014

  • Проблема несоизмеримых, первый кризис в основании математики, его следствия и попытки преодоления. Зарождение и развитие понятия числа. Становление теории предела, создание теории действительного числа. Великие метематики: Вейерштрасс, Кантор, Дедекинд.

    реферат, добавлен 26.11.2009

  • Определение операций сложения, вычитания и умножения для дуальных чисел. Определение модуля и сопряжённого числа. Деление на дуальное число. Определение делителя нуля. Запись дуального числа в форме, близкой к тригонометрической форме комплексного числа.

    курсовая работа, добавлен 10.04.2011

  • Простые числа-близнецы - числа, находящиеся на расстоянии друг от друга в 2 единицы.

    научная работа, добавлен 12.07.2008

  • Понятие тригонометрии, ее сущность и особенности, история возникновения и развития. Структура тригонометрии, ее элементы и характеристика. Создание и развитие аналитической теории тригонометрических функций, роль в нем академика Леонарда Эйлера.

    творческая работа, добавлен 15.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.