Понятия сферической геометрии

Понятия сферической геометрии, соответствие между сферической геометрией и планиметрией. Применение сферической тригонометрии в навигации. Углы сферического многоугольника, анализ планиметрических аксиом. Теорема косинусов для сферических треугольников.

Подобные документы

  • Очерк жизни и творчества великого древнегреческого ученого Эвклида, оценка его достижений в области математики. Анализ главных произведений Эвклида, его основополагающие идеи и источники их формирования. Геометрия на поверхности отрицательной кривизны.

    реферат, добавлен 13.12.2010

  • Анализ проявлений недоказуемости пятого постулата Евклида. Общая характеристика и обоснование основных идей неевклидовской геометрии в работах Д. Саккери, И.Г. Ламберта, Я. Бояи, Ф. Швейкарта, Ф.А. Тауринуса, К.Ф. Гаусса, Н.И. Лобачевского, Я. Больяйя.

    реферат, добавлен 21.09.2010

  • Пирамида — многогранник, основание которого — многоугольник, а остальные грани — треугольники, имеющие общую вершину. История развития пирамиды; виды, элементы, углы, развёртка, свойства; теоремы, связывающие ее с другими геометрическими телами; формулы.

    презентация, добавлен 28.03.2012

  • История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.

    курсовая работа, добавлен 16.10.2013

  • Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.

    презентация, добавлен 26.01.2015

  • Базовые основы системы mn параметров, варианты их значений. Теоремы циклов для треугольников и прямоугольного треугольника. Тайна теоремы Пифагора, предистория ее рождения. Итерационные формулы и их использование. Дисперсия точек ожидаемой функции.

    статья, добавлен 24.11.2011

  • Биография Менелая Александрийского - древнегреческого астронома и математика. Формулировка и доказательство теоремы Менелая для плоского случая, при переносе центральным проектированием на сферу. Применение теоремы для решения прикладных задач.

    презентация, добавлен 17.11.2013

  • Треугольник как геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки. Основные элементы данной фигуры: вершины и стороны. Классификация и разновидности треугольников по различным признакам.

    презентация, добавлен 28.11.2013

  • Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.

    творческая работа, добавлен 25.06.2009

  • Определение и свойства равнобедренного треугольника. Соотношения для углов, сторон, периметра, площади для равнобедренных треугольников по отношению к вписываемым и описываемым окружностям. Параметры биссектрис, медиан, высот, углов треугольников.

    презентация, добавлен 23.04.2015

  • Изучение понятия интегральной суммы. Верхний и нижний пределы интегрирования. Анализ свойств определенного интеграла. Доказательство теоремы о среднем. Замена переменной в определенном интеграле. Производная от интеграла по переменной верхней границе.

    презентация, добавлен 11.04.2013

  • Теорема Піфагора - важливий інструмент геометричних обчислень, її простота, значення; історичні відомості. Теорема Піфагора на площині та у просторі, її стереометричний аналог; цілочислові прямокутні трикутники. Доведення теореми, класифікація задач.

    курсовая работа, добавлен 16.05.2011

  • Путь Пифагора к знаниям, источники его учения и научная деятельность. Формулировка теоремы Пифагора, ее простейшее доказательство на примере равнобедренного прямоугольного треугольника. Применение изучаемой теоремы для решения геометрических задач.

    презентация, добавлен 18.12.2012

  • Изучение биографии и деятельности Франсуа Виета и его вклада в математику. Определение понятия квадратного уравнения. Сущность уравнений частного порядка и их решение рациональным способом. Анализ теоремы Виета как инструмента для решения уравнений.

    презентация, добавлен 31.05.2019

  • Общий вид интеграла с переменным верхним пределом, его основные свойства. Теорема о среднем, её следствие. Функция, причины ее непрерывности, доказательство, её наименьшее и наибольшее значение. Связь между неопределенным и определенным интегралом.

    презентация, добавлен 18.09.2013

  • Понятие симметрии и особенности ее отражения в различных сферах: геометрии и биологии. Ее разновидности: центральная, осевая, зеркальная и вращения. Специфика и направления исследования симметрии в человеческом теле, природе, архитектуре, быту, физике.

    презентация, добавлен 13.12.2016

  • Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.

    шпаргалка, добавлен 24.12.2010

  • Леонард Эйлер — швейцарский, немецкий и российский математик; биография, вклад в развитие механики, физики, астрономии; автор исследований по математическому анализу, дифференциальной геометрии, приближённым вычислениям, кораблестроению, теории музыки.

    реферат, добавлен 22.12.2011

  • Предпосылки развития алгебры множеств. Основы силлогистики и соотношение между множествами. Применение и типы жергонновых отношений. Понятие пустого множества и универсума. Построение диаграмм Эйлера и обоснование законов транзитивности и контрапозиции.

    контрольная работа, добавлен 03.09.2010

  • Предмет и задачи планиметрии, как раздела геометрии, в котором изучаются такие фигуры на плоскости, как точка, прямая, параллелограмм, трапеция, окружность и треугольник. Аксиомы принадлежности, расположения, измерения, откладывания, параллельности.

    презентация, добавлен 22.10.2013

  • Теоретические основы изучения площадей многоугольников. Вычисление площадей в древности. Различные подходы к изучению понятий "площадь", "многоугольник", "площадь многоугольника". Вычисление площади многоугольника по координатам его вершин. Формула Пика.

    дипломная работа, добавлен 24.02.2010

  • Жизненный путь философа и математика Пифагора. Различные способы доказательства его теоремы, устанавливающей соотношение между сторонами прямоугольного треугольника (метод площадей). Использование обратной теоремы как признака прямоугольного треугольника.

    презентация, добавлен 04.04.2019

  • Биография Архимеда - древнегреческого математика, физика и инженера из Сиракуз. Исследования по геометрии, арифметике и алгебре. Книги "О равновесии плоских фигур" и "О плавании тел", "О коноидах и сфероидах", "О шаре и цилиндре", "Измерение круга".

    презентация, добавлен 17.11.2014

  • Использование разнообразных геометрических форм в современной архитектуре. Геометрические формы в разных архитектурных стилях. Изучение связи геометрии и архитектуры. Определение соответствия архитектурных зданий и сооружений геометрическим телам.

    презентация, добавлен 23.09.2019

  • Определение и этапы доказательства теоремы Штольца, ее теоретическое и практическое значение в прикладной математике, применение. Понятие предела последовательности, характерные примеры вычисления пределов последовательности с подробным разбором решения.

    курсовая работа, добавлен 28.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.