Решение линейных интегральных уравнений
Основные леммы и теоремы для решения линейных интегральных уравнений методом итераций. Применение информационных технологий для вычисления функции, построение алгоритма для определения уравнения по ядру и отрезку интегрирования и правой части уравнения.
Подобные документы
Разработка программы для решения системы линейных уравнений методом Крамера и с помощью расширенной матрицы на языке С++. Описание метода Крамера. Структура программы: заголовочные файлы, типы данных, переменные, идентификаторы, операторы, массивы.
курсовая работа, добавлен 19.01.2009Суть метода Рунге-Кутта и его свойства. Решение дифференциальных уравнений первого порядка. Вычислительный блок Given/Odesolve. Встроенные функции rkfixed, Rkadapt, Bulstoer. Решения линейных алгебраических уравнений в среде MathCad и Microsoft Excel.
курсовая работа, добавлен 02.06.2014Mathcad и его основные понятия. Возможности и функции системы в матричных исчислениях. Простейшие операции с матрицами. Решение систем линейных алгебраических уравнений. Собственные векторы. Разложение Холецкого. Элементарная теория линейных операторов.
курсовая работа, добавлен 25.11.2014Этапы численного решения нелинейных уравнений заданного вида: отделение (изоляция, локализация) корней уравнения аналитическим или графическим способами, уточнение конкретного выделенного корня методом касательных (Ньютона). Решение в системе MathCad.
курсовая работа, добавлен 22.08.2012Численный метод для решения однородного дифференциального уравнения первого порядка методом Эйлера. Решение систем дифференциальных уравнений методом Рунге–Кутта. Решение краевой задачи. Уравнения параболического типа, а также Лапласа и Пуассона.
курсовая работа, добавлен 27.05.2013Сущность метода Гаусса при решении систем линейных уравнений. Элементарные преобразования этого метода. Краткое описание среды визуальной разработки Delphi. Описание основных применяемых процедур и алгоритм роботы программы по решению уравнений.
курсовая работа, добавлен 29.08.2010Изучение численных методов решения нелинейных уравнений, используемых в прикладных задачах. Нахождение корня уравнения методом простой итерации и методом касательных (на примере уравнения). Отделение корней графически. Программная реализация, алгоритм.
курсовая работа, добавлен 15.06.2013Изучение основных этапов проектирования программных систем, создание прикладной программы, которая выполняет решение систем линейных алгебраических уравнений методом Гаусса. Вычисление определителя и обращение матриц. Листинг разработанной программы.
курсовая работа, добавлен 12.07.2012Разработка, утверждение стандарта и использование языка программирования С++. Решение системы линейных уравнений методом Гаусса или итераций. Создание классов с одномерным и двумерным динамическим массивом. Построение блок-схемы и листинг программы.
курсовая работа, добавлен 15.01.2011Характеристика методов решений систем линейных алгебраических уравнений, основные виды численных методов и применение программного продукта Delphi 5.0 как наиболее эффективного. Сущность методов Гаусса, Гаусса-Жордана и Якоби, особенности метода Зейделя.
курсовая работа, добавлен 25.06.2010Поиск корня алгебраического уравнения. Формирование графических объектов на основе "Диаграмма Microsoft Graph". Системы линейных алгебраических уравнений. Алгоритм формирования и копирования матриц для вычисления определителей, вектора решения СЛАУ X.
контрольная работа, добавлен 11.05.2009Создание параллельной программы на языке программирования высокого уровня С с расширением MPI и аналогичной программы на OpenMP для решения двумерного уравнения Пуассона итерационным методом Зейделя. Блок-схема алгоритма, анализ работы программы.
контрольная работа, добавлен 06.01.2013Численные методы решения нелинейных уравнений, используемых в прикладных задачах. Составление логической схемы алгоритма, таблицы индентификаторов и программы нахождения корня уравнения методом дихотомии и методом Ньютона. Ввод программы в компьютер.
курсовая работа, добавлен 19.12.2009Использование повторяющегося процесса. Нахождение решения за определенное количество шагов. Применение метода хорд и метода простой итерации. Методы нахождения приближенного корня уравнения и их применение. Построение последовательного приближения.
курсовая работа, добавлен 15.06.2013Объектно-ориентированное программирование: основная идея, сопровождение, модификация, термины и положения. Понятие объекта как логической единицы, правила (методы) обработки данных. Метод Гаусса для решения систем линейных алгебраических уравнений.
курсовая работа, добавлен 22.04.2009Особенности точных и итерационных методов решения нелинейных уравнений. Последовательность процесса нахождения корня уравнения. Разработка программы для проверки решения нелинейных функций с помощью метода дихотомии (половинного деления) и метода хорд.
курсовая работа, добавлен 15.06.2013Изучение методов решения нелинейных уравнений таких как: метод Ньютона, модифицированный метод Ньютона, метод Хорд, метод простых Итераций. Реализация программы для персонального компьютера, которая находит решение нелинейного уравнения разными способами.
практическая работа, добавлен 24.06.2012Сферы использования компьютеров, сущность и языки программирования. Применение модифицированного метода Гаусса и расширенной матрицы для решения системы линейных алгебраических уравнений (СЛАУ). Разработка программы, системные требования для ее работы.
курсовая работа, добавлен 09.01.2014Разработка мультимедийного учебного пособия, содержащего текстовую и графическую информацию по системе решения систем линейных уравнений. Требования к функциональной части прикладной системы, к интерфейсу пользователя. Структура обучающей программы.
дипломная работа, добавлен 07.04.2014Возможности математического пакета MathCad в среде Windows 98 для использования матричной алгебры и решения системы линейных алгебраических уравнений. Методы решения систем линейных алгебраических уравнений. Сравнение метода Гаусса с методом MathCad.
практическая работа, добавлен 05.12.2009Математическое описание численных методов решения уравнения, построение графика функции. Cтруктурная схема алгоритма с использованием метода дихотомии. Использование численных методов решения дифференциальных уравнений, составление листинга программы.
курсовая работа, добавлен 19.12.2009Вычисления по формулам с циклическими ссылками (на примере нахождения корня уравнения методом Ньютона). Использование команды "Подбор параметра". Задачи, которые можно решать с помощью сервиса "Поиск решения" и способы сохранения параметров поиска.
учебное пособие, добавлен 06.02.2009Математическое описание алгоритмов схемы и операций для уравнения Лапласа. Изучение разностной схемы "крест" для нахождения численного решения эллиптического уравнения, задача Дирихле. Использование указателей в среде Matlab для решений методом Гаусса.
дипломная работа, добавлен 23.10.2014Описание алгоритма создания программы для решения алгебраических или трансцендентных уравнений с помощью численного метода Бернулли. Нахождение значений корней алгебраического уравнения с заданными параметрами точности. Листинг программы на языке java.
контрольная работа, добавлен 19.06.2015Решение нелинейных уравнений методом простых итераций и аналитическим, простым и модифицированным методом Ньютона. Программы на языке программирования Паскаль и С для вычислений по вариантам в порядке указанных методов. Изменение параметров задачи.
лабораторная работа, добавлен 24.06.2008