Интегрирование дифференциальных уравнений с помощью степенных рядов
Понятия, связанные с рядами и дифференциальными уравнениями. Необходимый признак сходимости. Интегрирование дифференциальных уравнений с помощью рядов. Уравнение Эйри и Бесселя. Примеры интегрирования в Maple. Приближенные вычисления с помощью рядов.
Подобные документы
Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.
курсовая работа, добавлен 12.06.2010Непосредственное (элементарное) интегрирование, вычисление интегралов с помощью основных свойств неопределенного интеграла и таблицы интегралов. Метод замены переменной (метод подстановки). Интегрирование по частям, определение точности интегралов.
презентация, добавлен 18.09.2013- 28. Степенные ряды
Определение степенного ряда. Теорема Абеля как определение структуры области сходимости степенного ряда. Свойства степенных рядов. Ряды Тейлора, Маклорена для функций. Разложение некоторых элементарных функций в ряд Маклорена. Приложения степенных рядов.
реферат, добавлен 08.06.2010 Градиентные уравнения и уравнения в вариациях, функционалы метода наименьших квадратов. Численное решение градиентных уравнений: полиномиальные системы, метод рядов Тейлора и метод Рунге-Кутта. Числовые модели осциллирующих процессов в живой природе.
реферат, добавлен 10.08.2010Описание признака сходимости числовых рядов Даламбера, решение задач на исследование сходимости. Формулировка радикального признака сходимости Коши знакоположительного ряда в предельной форме. Доказательство знакочередующихся и знакопеременных рядов.
реферат, добавлен 06.12.2010Изучение истории квадратных уравнений. Анализ общего правила решения квадратных уравнений, изложенного итальянским математиком Леонардо Фибоначчи. Решение квадратных уравнений с помощью циркуля и линейки, с помощью номограммы, способом "переброски".
презентация, добавлен 16.01.2011Практическое решение дифференциальных уравнений в системе MathCAD методами Рунге—Кутты четвертого порядка для решения уравнения первого порядка, Булирша — Штера - системы обыкновенных дифференциальных уравнений первого порядка и Odesolve и их графики.
лабораторная работа, добавлен 23.07.2012Предмет и методы изучения дифференциальной векторно-матричной алгебры, ее структура. Векторное решение однородных и неоднородных дифференциальных уравнений. Численное решение векторно-матричных уравнений. Формулы построения вычислительных процедур.
реферат, добавлен 15.08.2009Базовые действия над матрицами. Решение матричных уравнений с помощью обратной матрицы и с помощью элементарных преобразований. Понятия обратной и транспонированной матриц. Решение матричных уравнений различных видов: АХ=В, ХА=В, АХВ=С, АХ+ХВ=С, АХ=ХА.
курсовая работа, добавлен 09.09.2013Схематическое изображение и краткое описание заданной гидравлической системы, выражение работы данной системы с помощью уравнений. Написание уравнения системы виде входа-выхода, решение задачи в символьном виде. Разложение уравнения в ряд Тейлора.
лабораторная работа, добавлен 11.03.2012Рассмотрение теории дифференциальных уравнений. Выделение классов уравнений с систем, решения которых не имеют подвижных критических особых точек. Установление достаточности найденных условий путем сравнения с классическими системами типа Пенлеве.
курсовая работа, добавлен 01.06.2015Особенности неопределенного интеграла. Методы интегрирования (Замена переменной. Интегрирование по частям). Интегрирование рациональных выражений. Интегрирование рациональных дробей. Метод Остроградского. Интегрирование тригонометрических функций.
лабораторная работа, добавлен 05.07.2010Вычисление общего решения дифференциальных уравнений первого порядка с разделяющимися переменными. Расчет определенного интеграла с точностью до 0,001. Определение вероятности заданных событий, математического ожидания и дисперсии случайной величины.
контрольная работа, добавлен 21.10.2012Обобщенные решения линейных дифференциальных уравнений. Основные примеры построения фундаментальных решений линейных дифференциальных операторов с постоянными коэффициентами, метод преобразования Фурье. Преимущества использования методов спуска.
курсовая работа, добавлен 10.04.2014- 40. Численные методы
Приближенные числа и действия над ними. Решение систем линейных алгебраических уравнений. Интерполирование и экстраполирование функций. Численное решение обыкновенных дифференциальных уравнений. Отделение корня уравнения. Поиск погрешности результата.
контрольная работа, добавлен 18.10.2012 Особенности решения линейных и нелинейных уравнений. Характеристика и практическое применение и различных методов при решении уравнений. Сущность многочлена Лагранжа и обратного интерполирования. Сравнение численного дифференцирования и интегрирования.
курсовая работа, добавлен 20.01.2010Классификация гиперболических уравнений в общей классификации уравнений математической физики. Классификация уравнений: волновое, интегро-дифференциальные, уравнение теплопроводности. Методы решения в зависимости от видов гиперболических уравнений.
контрольная работа, добавлен 19.01.2009Общая характеристика параболических дифференциальных уравнений на примере уравнения теплопроводности. Основные определения и конечно-разностные схемы. Решение дифференциальных уравнений параболического типа методом сеток или методом конечных разностей.
контрольная работа, добавлен 27.04.2011Исследование функции, построение ее графика, используя дифференциальное исчисление. Вычисление неопределенных интегралов, используя методы интегрирования. Пределы функции. Определение области сходимости степенного ряда. Решение дифференциальных уравнений.
контрольная работа, добавлен 06.09.2015Представления линейных дифференциальных уравнений как средств математического решения практических задач в естествознании. Простейшая модель однородных популяций на примере определения роста численности карасей. Отлов с постоянной и относительной квотой.
курсовая работа, добавлен 11.07.2011Существование и единственность решений дифференциальных уравнений. Геометрическая интерпретация решений. Линейные и нелинейные системы. Дифференциальные уравнения, моделирующие динамику популяций конкурирующих видов, их решения и фазовые портреты.
дипломная работа, добавлен 27.06.2012Неизвестная функция, ее производные и независимые переменные - элементы дифференциального уравнения. Семейство численных алгоритмов решения обыкновенных дифференциальных уравнений, их систем. Методы наименьших квадратов, золотого сечения, прямоугольников.
контрольная работа, добавлен 08.01.2016Решение системы линейных уравнений по правилу Крамера и с помощью обратной матрицы. Нахождение ранга матрицы. Вычисление определителя с помощью теоремы Лапласа. Исследование на совместимость системы уравнений, нахождение общего решения методом Гауса.
контрольная работа, добавлен 24.05.2009Метод степенных рядов, применяемый для суммирования расходящихся рядов. Формулировка Пуассона, теорема Абеля. Метод средних арифметических и метод Чезаро. Знакопостоянный ряд натуральных чисел. Взаимоотношение между методами Пуассона-Абеля и Чезаро.
реферат, добавлен 11.04.2014Математическое объяснение метода Эйлера, исправленный и модифицированный методы. Блок-схемы алгоритмов, описание, текст и результаты работы программы. Решение обыкновенных дифференциальных (нелинейных) уравнений первого порядка с начальными данными.
курсовая работа, добавлен 12.06.2010