Закономерность распределения простых чисел в ряду натуральных чисел

Важная роль простых чисел (ПЧ) в криптографии, генерации случайных чисел, навигации, имитационном моделировании. Необходимость закономерности распределения ПЧ в ряду натуральных чисел. Цель: найти закономерность среди ПЧ + СЧ, а потом закономерность среди

Подобные документы

  • Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.

    курсовая работа, добавлен 03.01.2008

  • Простое расширение Q+(a). Минимальное соотношение алгебраического элемента над полуполем рациональных неотрицательных чисел. Однопорожденные полуполя. Структура простого расширения полуполя неотрицательных рациональных чисел.

    дипломная работа, добавлен 08.08.2007

  • Идея элементарного доказательства великой теоремы Ферма исключительно проста: разложение чисел a, b, c на пары слагаемых, группировка из них двух сумм U' и U'' и умножение равенства a^n + b^n – c^n = 0 на 11^n (т.е. на 11 в степени n, а чисел a, b, c на 1

    статья, добавлен 07.07.2005

  • Фибоначчи Леонардо Пизанский — первый крупный математик средневековой Европы. Ряд чисел Фибоначчи - элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Примеры ряда Фибоначчи в повседневной жизни.

    доклад, добавлен 24.03.2012

  • Ознакомление с записью чисел в алфавитной системе счисления. Особенности установления числовых значений букв у славянских народов. Рассмотрение записи больших чисел в славянской системе счисления. Обозначение "тем", "легионов", "леордов" и "колод".

    презентация, добавлен 30.09.2012

  • История отрицательных чисел: их отрицание в Древнем Египте, Вавилоне, Греции, узаконивание в Китае и Индии. Математические действия с ними. Подходы к определению положению нуля как натурального числа. Изучение отрицательных чисел в школьной программе.

    презентация, добавлен 13.05.2011

  • Метод исследования Диофантовых уравнений и решенные этим методом: теорема Ферма, уравнение Пелля, эллиптических кривых, иррациональные корни уравнения, поиск Пифагоровых троек, уравнение Каталана, гипотезы Билля. Закон распределения простых чисел.

    доклад, добавлен 01.05.2009

  • Краткий биографический очерк жизни и деятельности Георга Кантора и Шарля Мерэ. История создания теории действительного числа, ее математическая сущность и характеристика. Определение отношения порядка. Понятие замкнутости множества вещественных чисел.

    презентация, добавлен 11.06.2011

  • Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.

    реферат, добавлен 13.01.2011

  • Простые числа-близнецы - числа, находящиеся на расстоянии друг от друга в 2 единицы.

    научная работа, добавлен 12.07.2008

  • Гипотеза Биля как неопределенное уравнение, не имеющее решения в целых положительных числах. Использование метода замены переменных. Запись уравнения в соответствии с известной зависимостью для разности квадратов двух чисел. Наличие дробных чисел.

    творческая работа, добавлен 25.06.2009

  • Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника и наука вообще. История цифр. Числа и счисление. Способы запоминания чисел.

    реферат, добавлен 13.04.2008

  • Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    реферат, добавлен 19.08.2015

  • Комплексные числа в алгебраической форме. Степень мнимой единицы. Геометрическая интерпретация комплексных чисел. Тригонометрическая форма. Приложение теории комплексных чисел к решению уравнений 3-й и 4-й степени. Комплексные числа и параметры.

    дипломная работа, добавлен 10.12.2008

  • Примеры изучение дробных и многозначных чисел путем ребусов и головоломок. Основные принципы получения трехзначных чисел, путем шестикратного сложения. Математические задачи, направленные на развитие логического мышления и быстрого усваивания материала.

    презентация, добавлен 04.02.2011

  • Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.

    курсовая работа, добавлен 15.06.2011

  • Согласование выборочных распределений. Отбор статистических данных с помощью таблицы случайных чисел. Расчет числовых характеристик распределения выборочных частот. Проверка предположения, что распределение генеральной совокупности является нормальным.

    курсовая работа, добавлен 19.01.2016

  • Как люди научились считать, возникновение цифр, чисел и систем счисления. Таблица умножения на "пальцах": методика умножения для чисел 9 и 8. Примеры быстрого счета. Способы умножения двузначного числа на 11, 111, 1111 и т.д. и трехзначного числа на 999.

    курсовая работа, добавлен 22.10.2011

  • Абелевы группы по сложению. Кольца, образованные аддитивной группой ZxZ. Кольца, образованные аддитивной группой ZxZxZ. Подкольца поля комплексных чисел и кольца классов вычетов целых чисел. Теория ассоциативных колец.

    дипломная работа, добавлен 08.08.2007

  • Спиральная последовательность квадратов чисел. Последовательность чисел Фибоначчи и "золотое сечение" Леонардо да Винчи. Живые и неживые числа. Общая корзина "Гармонии Мироздания". Показательная спираль живой органики или спираль "Китовраса".

    статья, добавлен 18.04.2012

  • Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.

    реферат, добавлен 19.11.2010

  • Вычисление комплексных чисел, модуля и аргумента, извлечение кубических корней. Нахождение синусов и косинусов в алгебраическом виде. Решение системы уравнений с помощью формул Крамера, вспомогательных определителей и средствами матричного исчисления.

    контрольная работа, добавлен 11.05.2013

  • Мнимые и действительные, равные и сопряжённые комплексные числа; модуль и аргумент. Арифметические действия над множеством комплексных чисел: сумма, разность, произведение, деление. Представление комплексных чисел на координатной комплексной плоскости.

    презентация, добавлен 17.09.2013

  • Архитектура 32-х разрядных систем. Алгоритмы выполнения арифметических операций над сверхбольшими натуральными числами, представленными в виде списков. Инициализация системы. Сложение. Вычитание. Умножение.

    доклад, добавлен 20.03.2007

  • Основная задача геометрии чисел. Теорема Минковского. Доказательство теоремы Минковского. Решётки. Критические решётки. "Неоднородная задача". Герман Минковский (Minkowski) (1864 - 1909) - выдающийся математик, еврей, родом из России, профессор.

    курсовая работа, добавлен 29.05.2006

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.