Конечномерные гладкие задачи с равенствами и неравенствами. Принцип Лагранжа
Теория задач на отыскание наибольших и наименьших величин. Достаточные условия экстремума. Решение гладкой конечномерной задачи с ограничениями типа равенств и неравенств. Конечномерная теорема об обратной функции. Доказательство теоремы Вейштрасса.
Подобные документы
Однородные системы линейных неравенств и выпуклые конусы. Применение симплекс-метода для отыскания опорного решения системы линейных неравенств, ее геометрический смысл. Основная задача линейного программирования. Теорема Минковского, ее доказательство.
курсовая работа, добавлен 03.04.2015Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.
творческая работа, добавлен 17.10.2009Теоремы Паскаля, Брианшона для пятиугольника, четырехугольника, треугольника. Их использование для решения задач конструктивного типа проективной геометрии линий 2-го порядка на расширенной прямой, связанные с построением точек и касательных к ним.
курсовая работа, добавлен 02.06.2013- 29. Теорема Пифагора
Жизненный путь Пифагора, его путешествия и загадочная смерть. Заслуги Пифагора в арифметике, геометрии, музыке и астрономии. Древняя и современная формулировки теоремы Пифагора. Тригонометрическое доказательство и некоторые применения этой теоремы.
презентация, добавлен 13.12.2011 Общая характеристика сходимости последовательностей случайных величин и вероятностных распределений. Значение метода характеристических функций в теории вероятностей. Методика решения задач о типах сходимости. Анализ теоремы Ляпунова и Линдеберга.
курсовая работа, добавлен 22.07.2011Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.
курсовая работа, добавлен 25.11.2011Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.
реферат, добавлен 19.11.2010- 33. Теорема Дирихле
Формулировка и доказательство теоремы о простых числах в арифметической прогрессии (теорема Дирихле). Определение и основные свойства характеров. Суммы характеров и соотношение ортогональности. Характеры, L-функция Дирихле. Доказательство основных лемм.
курсовая работа, добавлен 12.08.2009 Ознакомление с геометрической и алгебраической формулировками понятия равносоставленности и практическое применение ее свойств при доказательстве обратной теоремы Пифагора методами площадей и подобных треугольников и решении задач на разрезание.
доклад, добавлен 21.02.2010- 35. Теорема Ляпунова
Система Ляпунова - случай одной степени свободы. Необходимые и достаточные условия существования периодических решений. Применение алгоритма Ляпунова для построения приближенного периодического решения задачи Коши для системы дифференциальных уравнений.
курсовая работа, добавлен 11.05.2012 - 36. Теорема Пифагора
Краткий биографический очерк жизненного пути Пифагора. История появления теоремы Пифагора, ее дальнейшее распространение в мире. Формулировка и доказательство теоремы с помощью различных методов. Возможности применения теоремы Пифагора к вычислениям.
презентация, добавлен 17.11.2011 - 37. Математика
Поиск участков возрастания и убывания функций, классификация экстремума. Умножение матриц АВ–1С. Теория вероятности события и случайных величин. Построение интервальной группировки данных. Решение задачи линейного программирования, построение графика.
контрольная работа, добавлен 11.11.2012 Формулировки и доказательства китайской теоремы об остатках. Доказательство с помощью метода математической индукции. Конструктивный метод доказательства. Основные алгоритмы поиска решения. Применение китайской теоремы об остатках к открытию сейфа.
курсовая работа, добавлен 08.01.2022Сходимость последовательностей случайных величин. Центральная предельная теорема для независимых одинаково распределенных случайных величин. Основные задачи математической статистики, их характеристика. Проверка гипотез по критерию однородности Смирнова.
курсовая работа, добавлен 13.11.2012Основные понятия и результаты, связанные с теорией диофантовых уравнений, теорией эллиптических кривых и abc-гипотезой. Метод бесконечного спуска и доказательство теоремы Ферма для n=4. Анализ выводов К. Рибета Великой теоремы Ферма из гипотезы Таниямы.
дипломная работа, добавлен 26.05.2012Рациональность решения задач с помощью теорем Чевы и Менелая, чем их решение другими способами, например векторным. Доказательство теорем, дополнительное построение. Трудности, связанные с освоением этих теорем, оправданные применением при решении задач.
контрольная работа, добавлен 05.05.2019Принцип максимума Понтрягина. Необходимое и достаточное условие экстремума для классической задачи на условный экстремум. Регулярная и нерегулярная задача. Поведение функции в различных ситуациях. Метод Ньютона решения задачи, свойства его сходимости.
курсовая работа, добавлен 31.01.2014Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.
статья, добавлен 17.10.2009Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.
творческая работа, добавлен 25.06.2009Биография немецкого математика А. Гурвица. Основные положения теоремы Ферма. Обзор систем "чисел", которые можно построить, исходя из действительных чисел, путем добавления рядя "мнимых единиц". Приложение теоремы Гурвица: теоремы Фробениуса и Лагранжа.
курсовая работа, добавлен 25.05.2010Основные сведения о симплекс-методе, оценка его роли и значения в линейном программировании. Геометрическая интерпретация и алгебраический смысл. Отыскание максимума и минимума линейной функции, особые случаи. Решение задачи матричным симплекс-методом.
дипломная работа, добавлен 01.06.2015Сущность метода системосовокупностей как одного из распространенных и универсальных методов решения неравенств любого типа. Обобщение метода интервалов на тригонометрической окружности. Эффективность и наглядность графического метода решения задач.
методичка, добавлен 14.03.2011Экзаменационные задачи по математике: расчет процентной концентрации раствора; решение уравнений и неравенств; задачи по геометрии, планиметрии и стереометрии; определение тригонометрических функций, вероятности события; нахождение экстремумов функции.
задача, добавлен 28.12.2011Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.
статья, добавлен 21.05.2009- 50. Эйлеровы графы
Основные понятия, связанные с графом. Решение задачи Эйлера о семи кёнигсбергских мостах. Необходимые и достаточные условия для эйлеровых и полуэйлеровых графов. Применение теории графов к решению задач по математике; степени вершин и подсчёт рёбер.
курсовая работа, добавлен 16.05.2016