Основні властивості простору Соболєва

Теоретичні і прикладні питання математичної фізики й функціонального аналізу. Узагальнена похідна в просторі Соболєва: визначення, гладкі функції; найпростіша теорема вкладення. Доказ існування і одиничності узагальненого рішення рівняння Лапласа.

Подобные документы

  • Дзета-функція Римана та її застосування в математичному аналізі. Оцінка поводження дзета-функції в околиці одиниці. Теорія рядів Фур'є. Абсолютна збіжність інтеграла. Функціональне рівняння дзета-функції. Властивості функції в речовинній області.

    курсовая работа, добавлен 28.12.2010

  • Збіжність ряду та базиси в нормованому просторі. Ряд Фур’є за ортонормованою системою. Деякі властивості біортогональних систем. Біортогональні системи в бананових просторах. Властивості базисів та особливості застосування рядів в бананових просторах.

    курсовая работа, добавлен 28.11.2014

  • Математичний аналіз властивостей геометричних об'єктів, відкритих і замкнених множин. Основні приклади, спеціальні метрики та топологія повних метричних просторів. Теорема Бера про вкладені кулі. Визначення границі числової послідовності та повноти.

    дипломная работа, добавлен 28.05.2019

  • Узагальнена теорема синусів. Деякі перетворення, пов'язані з теоремою Чеви. Вираження площі трикутника через радіуси вписаного круга і півпериметр. Залежність між радіусом вписаного кола і радіусами зовнівписаних кіл. Центр мас периметра трикутника.

    курсовая работа, добавлен 29.03.2014

  • Випадок однорідної крайової задачі. Розв’язання виродженого крайового виразу. Теорема Коші, іі доведення. Означення узагальненої функції Гріна крайової задачі. Формулювання алгоритму відшукання узагальненої функції Гріна. Приклади роз'язання завдань.

    лекция, добавлен 24.01.2009

  • Етапи розв'язування задачі дослідження певного фізичного явища чи процесу, зведення її до диференціального рівняння. Методика та схема складання диференціальних рівнянь. Приклади розв'язування прикладних задач за допомогою диференціального рівняння.

    контрольная работа, добавлен 07.01.2016

  • Основні поняття теорії диференціальних рівнянь. Лінійні диференціальні рівняння I порядку. Рівняння з відокремлюваними змінними. Розв’язування задачі Коші. Зведення до рівняння з відокремлюваними змінними шляхом введення нової залежної змінної.

    лекция, добавлен 30.04.2014

  • Введення поняття інтеграла Стільєса та його розробка. Визначення проблеми моментів. Загальні умови та класи випадків існування інтеграла Стільєса. Теорема про середній. Застосування інтеграла Стільєса в теорії ймовірностей та у квантовій механіці.

    дипломная работа, добавлен 25.02.2011

  • Схема класифікації та методи розв'язування рівнянь. Метод половинного ділення. Алгоритм. Метод хорд, Ньютона, їх проблеми. Граф-схема алгоритму Ньютона. Метод простої ітерації. Питання збіжності методу простої ітерації. Теорема про стискаючі відображення.

    презентация, добавлен 06.02.2014

  • Загальні відомості про комплексну площину, визначення інверсії. Формула інверсії в комплексно сполучених координатах. Нерухливі крапки, образи прямих і окружностей при узагальненій інверсії. Застосування інверсії при рішенні задач і доказі теорем.

    дипломная работа, добавлен 14.02.2011

  • Частинні похідні та диференційованість функції: поняття та теореми. Повний диференціал функції та його застосування до обчислення функцій і похибок. Диференціали вищих порядків. Інваріантність форми повного диференціала. Диференціювання неявної функції.

    реферат, добавлен 02.05.2011

  • Основні типи та види моделей. Основні методи складання початкового опорного плану. Поняття потенціалу й циклу. Критерій оптимальності базисного рішення транспортної задачі. Методи відшукання оптимального рішення. Задача, двоїста до транспортного.

    курсовая работа, добавлен 27.01.2011

  • Криволінійний інтеграл по довжині дуги. Обчислення визначеного інтеграла. Параметричні рівняння кривої. Властивості криволінійного інтеграла першого роду. Форми шляху інтегрування. Властивості визначеного інтеграла. Зміна напряму руху по кривій.

    лекция, добавлен 30.04.2014

  • Умови та особливості використання модифікованого методу Ейлера для отримання другої похідної в кінцево-різницевій формі. Два обчислення функції за крок. Метод Ейлера-Коші як частковий випадок методу Рунге-Кутта. Метод четвертого порядку точності.

    презентация, добавлен 06.02.2014

  • Передумови виникнення та основні етапи розвитку теорії ймовірностей і математичної статистики. Сутність, розробка та цінність роботи Стьюдента. Основні принципи, що лежать в основі клінічних досліджень. Застосування статистичних методів в даній сфері.

    контрольная работа, добавлен 27.11.2010

  • Определение числа исходов, благоприятствующих данному событию. Теорема умножения вероятностей и сложения несовместных событий, локальная теорема Лапласа. Расчет среднеквадратического отклонения величин. Несмещенная оценка генеральной средней и дисперсии.

    контрольная работа, добавлен 31.01.2011

  • Рішення з заданим ступенем точності задачі Коші для системи диференціальних рівнянь на заданому інтервалі. Формування мінімальної погрішності на другому кінці. Графіки отриманих рішень і порівняння їх з точним рішенням. Опис математичних методів рішення.

    курсовая работа, добавлен 27.12.2010

  • Теорія формацій алгебраїчних систем. Основні визначення, позначення й використовувані результати. Властивості централізаторів конгруенції універсальних алгебр. Формаційні властивості нильпотентних алгебр. Класи абелевих алгебр і їхні властивості.

    дипломная работа, добавлен 20.01.2011

  • Розв’язання системи рівнянь методом Крамера, методом оберненої матриці та методом Гаусса. Розрахунок довжини ребра, кута між ребрами, рівняння висоти, рівняння площини грані і кута між ребром та гранню. Дослідження функції та побудува її графіку.

    контрольная работа, добавлен 30.10.2011

  • Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.

    методичка, добавлен 25.12.2010

  • Умова існування цілих розв’язків лінійних діофантових рівнянь, алгоритм Евкліда. Розв’язування лінійних рівнянь з двома змінними в цілих числах. Методика вивчення діофантових рівнянь в загальноосвітніх школах. Діофантові рівняння вищих порядків.

    курсовая работа, добавлен 15.05.2019

  • Основна теорема про епіморфізм груп. Означення і властивості гомоморфного та ізоморфного відображення кілець, полів. Ізоморфізм циклічних груп. Поняття кільця, поля та їх основні властивості. Вправи на гомоморфізм та ізоморфізм груп, кілець і полів.

    дипломная работа, добавлен 19.09.2012

  • Прямое, обратное, двустороннее и дискретное преобразование Лапласа. Применение преобразования Лапласа. Прямое и обратное преобразования Лапласа некоторых функций. Связь с другими преобразованиями. Преобразование Лапласа по энергии и по координатам.

    реферат, добавлен 26.11.2010

  • Основне рівняння молотильного барабана по академіку В.П. Горячкіну та його аналіз. Визначення його критичних і робочої кутових швидкостей. Зв'язок між потужністю і приведеним моментом інерції барабана. Визначення основних параметрів молотильного апарата.

    презентация, добавлен 30.08.2014

  • Огинаючі лінії диференціального рівняння. Брахистохрона з фіксованою абсцисою правого кінця. Геодезичні лінії на кривої поверхні. Криволінійна трапеція з найбільшою площею. Крива прогину гнучкої нерозтяжної нитки. Поверхня обертання найменшої площі.

    курсовая работа, добавлен 15.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.