Системи нелінійних рівнянь
Чисельні методи розв’язання систем нелінійних рівнянь: лінійні і нелінійні рівняння, метод простих ітерацій, метод Ньютона. Практичне використання методів та особливості розв’язання систем нелінійних рівнянь у пакеті Mathcad, Excel та на мові С++.
Подобные документы
Суть принципу Діріхле та найпростіші задачі, пов’язані з ним. Використання методів розв’язування математичних задач олімпіадного характеру при вивченні окремих тем шкільного курсу математики та на факультативних заняттях. Індукція в геометричних задачах.
дипломная работа, добавлен 15.03.2013Ознайомлення із формулюваннями задач на побудову; застосування методів геометричного місця точок, центральної та осьової симетрії, паралельного переносу та повороту для їх розв'язання. Правила побудови шуканих фігур за допомогою циркуля і лінійки.
курсовая работа, добавлен 04.12.2011Поняття та особливості алгоритмів обчислювальних процедур. Операторні та предикатні алгоритми, їх характеристика, порядок та принципи формування, етапи розв'язання. Алгоритмічні проблеми для L. Логіка висловлень та предикатів в представленні знань.
курс лекций, добавлен 25.03.2011Загальні відомості про раціональні нерівності, теореми про рівносильність нерівностей. Методи розв'язування раціональних нерівностей вищих степенів узвгальненим методом інтервалів, методом заміни змінної. Розв'язування дробово-раціональних нерівностей.
курсовая работа, добавлен 01.04.2010Таблиця основних інтегралів та знаходження невизначених інтегралів від елементарних функцій. Розкладання підінтегральної функції в лінійну комбінацію більш простих функцій. Метод підстановки або заміни змінної інтегрування. Метод інтегрування частинами.
реферат, добавлен 29.06.2011Метод Гаусса, LU-разложение. Прогонка для решения линейных систем с трехдиагональными матрицами коэффициентов. Метод квадратного корня для решения систем: краткая характеристика, теоретическая основа, реализация, тестирование и листинг программы.
курсовая работа, добавлен 15.01.2013Теоретико-множинне визначення символу О як невизначеної функції. Допустима погрішність апроксимації. Асимптотичне рішення інтегралів, трансцендентних рівнянь (дійсного і змінного). Використання формул підсумовування Ейлера при знаходженні суми ряду.
курсовая работа, добавлен 20.01.2011Теореми про близькість розв'язку вихідної і усередненої системи на скінченому на нескінченому проміжках. Формулювання теорем про близькість розв'язків системи з повільними та швидкими змінними. Загальний прийом асимптотичного інтегрування системи.
курсовая работа, добавлен 03.01.2014Сравнение методов простой итерации и Ньютона для решения систем нелинейных уравнений по числу итераций, времени сходимости в зависимости от выбора начального приближения к решению и допустимой ошибки. Описание программного обеспечения и тестовых задач.
курсовая работа, добавлен 26.02.2011Основні типи стереометричних задач на побудову та методи їх розв’язування. Методичні рекомендації до проведення уроків з навчання учнів розв’язуванню цих задач на побудову. Комп’ютерна підтримка навчання учнів розв’язуванню задач засобами пакету GRAN.
дипломная работа, добавлен 26.08.2014Історія розвитку обчислювальної техніки. Особливості застосування швидкодіючих комп'ютерів для розв’язання складних математичних задач. Методика написання програми для обчислення визначених інтегралів за формулами прямокутників, трапецій та Сімпсона.
курсовая работа, добавлен 07.10.2010Методи перевірки чисел на простоту: критерій Люка та його теореми, їх доведення. Теорема Поклінгтона та її леми. Метод Маурера - швидкий алгоритм генерації доведених простих чисел, близьких до випадкового та доведення Д. Коувером і Дж. Куіскуотером.
лекция, добавлен 08.02.2011Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.
лекция, добавлен 14.12.2010- 114. Градієнтні методи
Методи багатомірної безумовної оптимізації першого й нульового порядків і їх засвоєння, порівняння ефективності застосування цих методів для конкретних цільових функцій. Загальна схема градієнтного спуску. Метод найшвидшого спуску. Схема яружного методу.
лабораторная работа, добавлен 10.12.2010 Метод Гаусса, метод прогонки, нелинейное уравнение. Метод вращения Якоби. Интерполяционный многочлен Лагранжа и Ньютона. Метод наименьших квадратов, интерполяция сплайнами. Дифференцирование многочленами, метод Монте-Карло и Рунге-Кутты, краевая задача.
курсовая работа, добавлен 23.05.2013Означення та властивості перетворення Лапласа, приклади розв'язання базових задач. Встановлення відповідності між двома точками за допомогою оператора. Застосування операційного методу математичного аналізу, проведення дій над логарифмами та числами.
реферат, добавлен 20.12.2010Реализация в пакете Mathcad альтернативных возможностей для получения ортогональных систем, с помощью которых можно получать аналитические выражения. Введение документа Mathcad, реализующего явные выражения для ортогональных систем Лежандра и Лагерра.
дипломная работа, добавлен 01.05.2014Процес розповсюдження тепла в стержні методом розділення змiнних. Застосування методу Фур’є розділення змінних для розв’язання поставленої нестацiонарної задачі теплопровiдностi. Теорема про нагрітий стержень з нульовими температурами в кінцевих точках.
курсовая работа, добавлен 10.04.2016Поняття та структура інтелекту людини. Процес формування інтелектуальних вмінь і навичок у молодших школярів. Особливості інтелектуального розвитку молодших школярів у процесі навчання математики. Специфіка розв'язання задач підвищеної складності.
курсовая работа, добавлен 20.03.2013Вивчення теорії інтегральних нерівностей типу Біхарі для неперервних і розривних функцій та її застосування. Розгляд леми Гронуолла–Беллмана–Бiхарi для нелiнiйних iнтегро-сумарних нерiвностей. Критерій стійкості автономної системи диференціальних рівнянь.
курсовая работа, добавлен 21.04.2015Розв'язання задач з теорії множин та математичної логіки. Визначення основних характеристик графа г (Х,W). Розклад функцій дискретного аргументу в ряди по базисним функціям. Побудова та доведення діаграми Ейлера-Вена. Побудова матриці інцидентності графа.
курсовая работа, добавлен 20.04.2012Формулювання задачі мінімізації. Мінімум функції однієї та багатьох змінних. Прямі методи одновимірної безумовної оптимізації: метод дихотомії і метод золотого перерізу. Метод покоординатного циклічного спуску. Метод правильного і деформованого симплексу.
курсовая работа, добавлен 11.08.2012Общая постановка задачи. Отделение корня. Уточнение корня. Метод половинного деления (бисекции). Метод хорд (секущих). Метод касательных (Ньютона). Комбинированный метод хорд и касательных. Задания для расчётных работ.
творческая работа, добавлен 18.07.2007Розгляд нових методів екстримізації однієї змінної. Типи задач, які існують для розв’язування задач мінімізації на множині Х. Золотий поділ відрізка на дві неоднакові частини, дослідження його на стійкість. Алгоритм, текст програми, результат роботи.
курсовая работа, добавлен 01.04.2011Биография Исаака Ньютона, его основные исследования и достижения. Описание порядка нахождения корня уравнения в рукописи "Об анализе уравнениями бесконечных рядов". Методы касательных, линейной аппроксимации и половинного деления, условие сходимости.
реферат, добавлен 29.05.2009