Перпендикулярність та паралельність площин
Площина як одне з основних понять геометрії, її розміщення у просторі. Поняття взаємно перпендикулярних площин. Огляд прикладів вирішення задачі на побудову двох паралельних площин. Теореми, що використовуються при розв’язанні позиційних задач на цю тему.
Подобные документы
Теорія межі послідовності й межі функції як один з розділів математичного аналізу. Поняття межі послідовності, огляд характерних прикладів обчислення меж послідовності з докладним розбором рішення, специфіка теореми Штольца й приклади її застосування.
курсовая работа, добавлен 17.01.2011Прийоми розв’язання задач в першому і другому степені на Далекому Сході та Греції. Досягнення арабських математиків в області алгебраїчних рівнянь. Розв'язання похідного кубічного рівняння. Найвидатніші теореми про радикали вищих степенів, їх розв’язання.
курсовая работа, добавлен 23.02.2014Етапи розв'язування задачі дослідження певного фізичного явища чи процесу, зведення її до диференціального рівняння. Методика та схема складання диференціальних рівнянь. Приклади розв'язування прикладних задач за допомогою диференціального рівняння.
контрольная работа, добавлен 07.01.2016Системи лінійних рівнянь з двома змінними з параметром. Тригонометричні рівняння та системи тригонометричних рівнянь з параметрами. Лінійні та квадратні нерівності. Застосування графічних методів паралельного переносу в розв’язанні задач з параметрами.
дипломная работа, добавлен 16.06.2013Задача Коші і крайова задача. Двоточкова крайова задача для диференціального рівняння другого порядку. Види граничних умов. Метод, заснований на заміні розв’язку крайової задачі розв’язком декількох задач Коші. Розв'язування систем нелінійних рівнянь.
презентация, добавлен 06.02.2014Застосування методів математичного аналізу для знаходження центрів мас кривих, плоских фігур та поверхонь з використанням інтегральних числень функцій однієї та кількох змінних. Поняття визначеного, подвійного, криволінійного та поверхневого інтегралів.
курсовая работа, добавлен 29.06.2011Теоретичні основи формування математичних понять. Поняття, як логіко-гносеологічна категорія. Об’єкт, поняття. Схожість їх і різниця. Суттєві і несуттєві властивості понять. Прийоми їх виявлення. Зміст і об’єм поняття, зв'язок між ними. Види понять.
дипломная работа, добавлен 21.07.2008Послідовність графічного розв'язання задачі лінійного програмування. Сумісна система лінійних нерівностей, умови невід'ємності, визначення півплощини з граничними прямими. Графічний метод для визначення оптимального плану задачі лінійного програмування.
задача, добавлен 31.05.2010Дослідження історії виникнення та розвитку координатно-векторного методу навчання розв'язування задач. Розкриття змісту даного методу, розгляд основних формул. Розв'язання факультативних стереометричних задач з використанням координатно-векторного методу.
курсовая работа, добавлен 10.04.2011Поняття та значення симплекс-методу як особливого методу розв'язання задачі лінійного програмування, в якому здійснюється скерований рух по опорних планах до знаходження оптимального рішення. Розв'язання задачі з використанням програми Simplex Win.
лабораторная работа, добавлен 30.03.2015Історія виникнення методу координат та його розвиток. Канонічні рівняння прямої. Основні векторні співвідношення і формули, які використовуються для розв'язування стереометричних задач. Розробка уроку з використанням координатно-векторного методу.
дипломная работа, добавлен 05.05.2011Розв'язок задач лінійного програмування симплексним методом, графічне вирішення системи нерівностей, запис двоїстої задачі: визначення прибутку, отриманого підприємством від реалізації виробів; загальних витрат, пов’язаних з транспортуванням продукції.
контрольная работа, добавлен 28.03.2011Задачі обчислювальної математики. Алгоритми розв'язування багатьох стандартних задач обчислювальної математики. Обчислення інтерполяційного полінома Лагранжа для заданої функції. Виконання обчислення першої похідної на основі другої формули Ньютона.
контрольная работа, добавлен 27.03.2012Теорія графів та її використання у різних галузях. У фізиці: для побудови схем для розв’язання задач. У біології: для розв’язання задач з генетики. Спрощення розв’язання задач з електротехніки за допомогою графів. Математичні розваги і головоломки.
научная работа, добавлен 10.05.2009Рівняння площини, яка проходить через задану точку перпендикулярно заданому вектору. Опис прямої лінії у просторі. Взаємне розташування прямої та площини. Поверхні другого порядку. Параметричні рівняння ліній. Приклади їх побудови в полярних координатах.
лекция, добавлен 30.04.2014Розв'язання системи лінійних рівнянь методом повного виключення змінних (метод Гаусса) з використанням розрахункових таблиць. Будування математичної моделі задачі лінійного програмування. Умови для застосування симплекс-методу. Розв'язка спряженої задачі.
практическая работа, добавлен 09.11.2009Поняття лінійного оператора, алгебраїчні операції над ним та базові властивості. Лінійні перетворення (оператори) із простору V в W. Матриця лінійного оператора. Перетворення матриці оператора при заміні базису. власні значення і власні вектори.
курсовая работа, добавлен 25.03.2011Розгляд крайової задачі для нелінійного рівняння другого порядку. Вивчення різницевого методу розв'язання крайових задач для звичайних диференціальних рівнянь. Метод прогонки - окремий випадок методу Гауса. Програма на алгоритмічній мові Turbo Pascal.
курсовая работа, добавлен 10.04.2011Суть принципу Діріхле та найпростіші задачі, пов’язані з ним. Використання методів розв’язування математичних задач олімпіадного характеру при вивченні окремих тем шкільного курсу математики та на факультативних заняттях. Індукція в геометричних задачах.
дипломная работа, добавлен 15.03.2013Огляд проблеми дискретного логарифмування в групі точок еліптичної кривої. Сутність та сфера використання методу Поліга-Хелмана. Особливості використання методу ділення точок на два. Можливі підходи і приклади розв’язання задач дискретного логарифмування.
реферат, добавлен 09.02.2011Означення модуля неперервності та його властивості. Дослідження поведінки найкращих наближень неперервної функції алгебраїчними многочленами на базі властивостей введених Діціаном і Тотіка. Вирішення оберненої задачі. Узагальнення теореми Джексона.
курсовая работа, добавлен 09.07.2015Практична реалізація задачі Гамільтона про мандрівника методом гілок та меж. Математична модель задачі комівояжера, її вирішення за допомогою алгоритму Літтла. Програмне знаходження сумарних мінімальних характеристик (відстані, вартості проїзду).
курсовая работа, добавлен 30.09.2014Означення та приклади застосування гармонічних функцій. Субгармонічні функції та їх деякі властивості. Розв’язок задачі Діріхле з використанням функції Гріна. Теореми зростання та спадання функції регулярної в нескінченній області (Фрагмена-Ліндельофа).
курсовая работа, добавлен 10.09.2013Основні напрямки теорії ймовірностей. Сутність понять "подія", "ймовірність події". Перестановки, розміщення та сполучення. Безпосередній підрахунок ймовірностей. Основні теореми додавання та множення ймовірностей. Формула повної ймовірності та Байєса.
контрольная работа, добавлен 27.03.2011Розв'язання завдання графічним способом. Зображення розв'язку системи нерівностей, визначення досягнення максимуму та мінімуму функції. Розв'язання транспортної задачі методом потенціалів та симплекс-методом, формування оціночної матриці з елементів.
задача, добавлен 31.05.2010