Симметрические многочлены от трех переменных
Определение и примеры симметрических многочленов от трех и нескольких переменных. Решение систем уравнений с тремя неизвестными. Освобождение от иррациональности в знаменателе. Разложение на множители. Основная теорема об антисимметрических многочленах.
Подобные документы
Уравнения с разделяющимися переменными, методы решения. Практический пример нахождения частного и общего решения. Понятие о неполных дифференциальных уравнениях. Линейные уравнения первого порядка. Метод вариации постоянной, разделения переменных.
презентация, добавлен 17.09.2013Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.
творческая работа, добавлен 20.05.2009- 103. Теорема Лагранжа
Применение теоремы Лагранжа при решении задач. Ее использование при решении неравенств и уравнений, при нахождении числа корней некоторого уравнения. Решение задач с использованием условия монотонности. Связи между возрастанием или убыванием функции.
реферат, добавлен 14.03.2013 Уравнение с разделяющимися переменными. Однородные и линейные дифференциальные уравнения. Геометрические свойства интегральных кривых. Полный дифференциал функции двух переменных. Определение интеграла методами Бернулли и вариации произвольной постоянной.
реферат, добавлен 24.08.2015Базовые действия над матрицами. Решение матричных уравнений с помощью обратной матрицы и с помощью элементарных преобразований. Понятия обратной и транспонированной матриц. Решение матричных уравнений различных видов: АХ=В, ХА=В, АХВ=С, АХ+ХВ=С, АХ=ХА.
курсовая работа, добавлен 09.09.2013- 106. Теория сравнений
Сущность и содержание теории сравнений. Основные понятия и теоремы сравнения первой степени с одной переменной. Методика сравнения по простому модулю с одним и несколькими неизвестными. Системы уравнений первой степени и основные этапы их решения.
курсовая работа, добавлен 27.06.2010 Знакомство с особенностями построения математических моделей задач линейного программирования. Характеристика проблем составления математической модели двойственной задачи, обзор дополнительных переменных. Рассмотрение основанных функций новых переменных.
задача, добавлен 01.06.2016Алгоритм вычисления интегральной суммы для функции нескольких переменных по кривой АВ. Определение понятия криволинейного интеграла второго рода. Представление суммы интегралов двух функций вдоль кривой АВ как криволинейного интеграла общего вида.
презентация, добавлен 17.09.2013Особенности дифференциальных уравнений как соотношения между функциями и их производными. Доказательство теоремы существования и единственности решения. Примеры и алгоритм решения уравнений в полных дифференциалах. Интегрирующий множитель в примерах.
курсовая работа, добавлен 11.02.2014Определение матрицы, решение систем уравнений методом Гаусса и по формулам Крамера. Определение параметров треугольника, его графическое построение. Задача приведения уравнения кривой второго порядка к каноническому виду и ее построение.
контрольная работа, добавлен 08.05.2009- 111. Комплексные числа
Комплексные числа и комплексные равенства, их алгебраическая и тригонометрическая формы. Арифметические действия над комплексными числами. Целые функции (многочлены) и их свойства. Решение алгебраических уравнений на множестве комплексных чисел.
лекция, добавлен 12.06.2011 Общие свойства функций. Правила дифференциального исчисления. Неопределенный и определенный интегралы, методы их вычисления. Функции нескольких переменных, производные и дифференциалы. Классические методы оптимизации. Модель потребительского выбора.
методичка, добавлен 07.01.2011Решение системы уравнений по методу Крамера, Гаусса и с помощью обратной матрицы. Общее число возможных элементарных исходов для заданных испытаний. Расчет математического ожидания, дисперсии и среднего квадратического отклонения, график функции.
контрольная работа, добавлен 23.04.2013Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.
курсовая работа, добавлен 12.06.2010Описание метода сведения краевой задачи к задаче Коши. Решение системы из двух уравнений с четырьмя неизвестными. Метод Рунге-Кутта. Расчет максимальной погрешности и выполнение проверки точности. Метод конечных разностей. Описание полученных результатов.
курсовая работа, добавлен 10.07.2012Многие переменные, минимизация их функций. Точки максимума и минимума называются точками экстремума функции. Условия существования экстремумов функции многих переменных. Квадратичная форма, принимающая, как положительные, так и отрицательные значения.
реферат, добавлен 05.09.2010- 117. Степенные ряды
Определение степенного ряда. Теорема Абеля как определение структуры области сходимости степенного ряда. Свойства степенных рядов. Ряды Тейлора, Маклорена для функций. Разложение некоторых элементарных функций в ряд Маклорена. Приложения степенных рядов.
реферат, добавлен 08.06.2010 Содержатся теоретические сведения и наборы заданий для аудиторных и индииндивидуальных заданий по следующим разделам: комплексные числа, неопределенные и определенные интегралы, функции нескольких переменных и обыкновенные дифференциальные уравнения.
книга, добавлен 26.02.2010Расчет денежных расходов предприятия на выпуск изделий, при выражении их стоимости при помощи матриц. Проверка совместимости системы уравнений и их решение по формулам Крамера и с помощью обратной матрицы. Решение алгебраических уравнений методом Гаусса.
контрольная работа, добавлен 28.09.2014- 120. Линейная регрессия
Характеристика экзогенных и эндогенных переменных. Теорема Гаусса-Маркова. Построение двухфакторного и однофакторных уравнения регрессии. Прогнозирование значения результативного признака. Оценка тесноты связи между результативным признаком и факторами.
курсовая работа, добавлен 19.05.2015 Решение системы методом Гаусса. Составление расширенной матрицу системы. Вычисление производной сложной функции, определенного и неопределенного интегралов. Область определения функции. Приведение системы линейных уравнений к треугольному виду.
контрольная работа, добавлен 27.04.2014Решение задач вычислительными методами. Решение нелинейных уравнений, систем линейных алгебраических уравнений (метод исключения Гаусса, простой итерации Якоби, метод Зейделя). Приближение функций. Численное интегрирование функций одной переменной.
учебное пособие, добавлен 08.02.2010Изучение способов работы с файлами с помощью автоматического преобразования данных. Решение иррациональных уравнений методами хорд и половинного деления. Вычисление определенного интеграла. Решение систем линейных алгебраических уравнений. Ряды Фурье.
курсовая работа, добавлен 16.08.2012Теория математического программирования. Методы поиска глобального экстремума функции нескольких переменных. Угловые точки допустимых множеств. Постановка общей задачи нелинейного программирования. Решения уравнения f(x)=0 методом простой итерации.
контрольная работа, добавлен 05.01.2013- 125. Условный экстремум
Нахождение экстремума функции нескольких переменных не на всей области определения, а на множестве, удовлетворяющему некоторому условию. Практический пример нахождения точки максимума и минимума функции. Главные особенности метода множителей Лагранжа.
презентация, добавлен 17.09.2013