Задачи и примеры их решения по теории вероятности

Расчет наступления определенного события с использованием положений теории вероятности. Определение функции распределения дискретной случайной величины, среднеквадратичного отклонения. Нахождение эмпирической функции и построение полигона по выборке.

Подобные документы

  • Непрерывная случайная величина и функция распределения. Математическое ожидание непрерывной случайной величины. Среднее квадратичное отклонение. Кривая распределения для непрерывной случайной величины. Понятие однофакторного дисперсионного анализа.

    контрольная работа, добавлен 03.01.2012

  • Экзаменационные задачи по математике: расчет процентной концентрации раствора; решение уравнений и неравенств; задачи по геометрии, планиметрии и стереометрии; определение тригонометрических функций, вероятности события; нахождение экстремумов функции.

    задача, добавлен 28.12.2011

  • Характеристика полной группы событий как совокупность всех возможных результатов опыта. Способы определения вероятности событий в задачах разного направления. Нахождение вероятности количества нестандартных деталей. Построение функции распределения.

    задача, добавлен 19.03.2011

  • Понятие непрерывной случайной величины, её значения на числовых промежутках. Определение закона распределения, его функции. Плотность распределения числовых характеристик вероятности. Математическое ожидание, дисперсия и среднеквадратичное отклонение.

    лекция, добавлен 17.08.2015

  • Вычисление общего решения дифференциальных уравнений первого порядка с разделяющимися переменными. Расчет определенного интеграла с точностью до 0,001. Определение вероятности заданных событий, математического ожидания и дисперсии случайной величины.

    контрольная работа, добавлен 21.10.2012

  • Построение полигона относительных частот, эмпирической функции распределения, кумулянты и гистограммы. Расчет точечных оценок неизвестных числовых характеристик. Проверка гипотезы о виде распределения для простого и сгруппированного ряда распределения.

    курсовая работа, добавлен 28.09.2011

  • Определение математического ожидания и дисперсии параметров распределения Гаусса. Расчет функции распределения случайной величины Х, замена переменной. Значения функций Лапласа и Пуассона, их графики. Правило трех сигм, пример решения данной задачи.

    презентация, добавлен 01.11.2013

  • Определение числовых характеристик производной случайной функции. Расчет корреляционной функции и дисперсии спектральной плотности. Группировка заданной выборки, построение выборочной функции распределения и гистограммы, доверительного интервала.

    контрольная работа, добавлен 02.06.2010

  • Нормальное распределение на прямой, нормальная кривая. Влияние параметров нормального распределения на форму нормальной кривой. Вероятность отклонения в заданный интервал нормальной случайной величины. Вычисление вероятности заданного отклонения.

    курсовая работа, добавлен 06.12.2012

  • Вычисление математического ожидания, дисперсии и коэффициента корреляции. Определение функции распределения и его плотности. Нахождение вероятности попадания в определенный интервал. Особенности построения гистограммы частот. Применение критерия Пирсона.

    задача, добавлен 17.11.2011

  • Основные понятия теории марковских цепей, их использование в теории массового обслуживания для расчета распределения вероятностей числа занятых приборов в системе. Методика решения задачи о наилучшем выборе. Понятие возвратных и невозвратных состояний.

    курсовая работа, добавлен 06.11.2011

  • Поиск искомой вероятности через противоположное событие. Интегральная формула Муавра–Лапласа. Нахождение вероятности попадания в заданный интервал распределенной случайной величины по ее математическому ожиданию и среднему квадратическому отклонению.

    контрольная работа, добавлен 17.03.2011

  • Правила применения уравнения Бернулли для определения возможности наступления события. Использование формул Муавра-Лапласа и Пуассона при неограниченном возрастании числа испытаний. Примеры решения задач с помощью теоремы Бернулли о частоте вероятности.

    курсовая работа, добавлен 21.01.2011

  • Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.

    шпаргалка, добавлен 18.06.2012

  • Определение точечной оценки средней наработки до отказа, вероятности безотказной работы. Построение функции распределения, верхней и нижней доверительной границы. Показатели надежности при известном и неизвестном виде закона распределения наработки.

    контрольная работа, добавлен 01.05.2015

  • Теория вероятности как наука убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Математические доказательства теории. Аксиоматика теории вероятности: определения, вероятность пространства, условная вероятность.

    лекция, добавлен 02.04.2008

  • Элементы линейной алгебры. Дифференциальное и интегральное исчисление функции одной переменной. Биномиальный закон распределения. Комбинаторные формулы. Статистическое определение вероятности. Формула полной вероятности. Дискретные случайные величины.

    творческая работа, добавлен 30.04.2009

  • Классическое определение вероятности. Формулы сложения и умножения вероятностей. Дисперсия случайной величины. Число равновозможных событий . Матрица распределения вероятностей системы. Среднее квадратическое отклонение, доверительный интервал.

    контрольная работа, добавлен 07.09.2010

  • Конечное или счетное множество как совокупность возможных значений дискретной случайной величины. Анализ закона распределения функции одного случайного аргумента. Характеристика условий, от которых зависит монотонное возрастание и убывание функции.

    презентация, добавлен 24.04.2019

  • Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    реферат, добавлен 19.08.2015

  • Теорема Бернулли на примере моделирования электросхемы. Моделирование случайной величины, имеющей закон распределения модуля случайной величины, распределенной по нормальному закону. Проверка критерием Х2: имеет ли данный массив закон распределения.

    курсовая работа, добавлен 31.05.2010

  • Анализ случайных явлений, статистическая обработка результатов численных экспериментов. Способы вычисления наступления предполагаемого события. Решение задач, связанных с теорией вероятности. Вероятность попадания случайной величины в заданный интервал.

    контрольная работа, добавлен 21.09.2013

  • Проверка выполнимости теоремы Бернулли на примере вероятности прохождения тока по цепи. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы данного закона распределения с помощью критерия Колмогорова.

    курсовая работа, добавлен 31.05.2010

  • Знакомство с основными понятиями и формулами комбинаторики как науки. Методы решения комбинаторных задач. Размещение и сочетание элементов, правила их перестановки. Характеристики теории вероятности, ее классическое определение, свойства и теоремы.

    презентация, добавлен 21.01.2014

  • Определение вероятность срабатывания устройств при аварии. Расчет математического ожидания, дисперсии и функции распределения по заданному ряду распределения. Построение интервального статистического ряда распределения значений статистических данных.

    контрольная работа, добавлен 12.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.