Решение задачи коммивояжера методом ветвей и границ

Методика решения задач высшей математики с помощью теории графов, ее сущность и порядок разрешения. Основная идея метода ветвей и границ, ее практическое применение к задаче. Разбиение множества маршрутов на подмножества и его графическое представление.

Подобные документы

  • Нумерация как отображение некоторого подмножества множества натуральных чисел N на исследуемый класс конструктивных объектов. Приведение к общему знаменателю на основе понятия нумерованного множества. Каноническое представление морфизма функции.

    реферат, добавлен 16.05.2009

  • Получение точного решения дифференциального уравнения вручную, операторным методом, приближенное решение с помощью рядов (до 5 элемента ряда) на заданном интервале, графическое решение. Относительная и абсолютная погрешность методов Эйлера и Рунге-Кутты.

    курсовая работа, добавлен 17.07.2014

  • Обыкновенные и модифицированные жордановы исключения. Последовательность решения задач линейного программирования симплекс-методом применительно к задаче максимизации: составлении опорного плана решения, различные преобразования в симплекс-таблице.

    курсовая работа, добавлен 01.05.2011

  • Метод Эйлера: сущность и основное содержание, принципы и направления практического применения, определение погрешности. Примеры решения задачи в Excel. Метод разложения решения в степенной ряд. Понятие и погрешность, решение с помощью метода Пикара.

    контрольная работа, добавлен 13.03.2012

  • Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.

    презентация, добавлен 20.02.2015

  • Теория графов как математический аппарат для решения задач. Характеристика теории графов. Критерий существования обхода всех ребер графа без повторений, полученный Л. Эйлером при решении задачи о Кенигсбергских мостах. Алгоритм на графах Дейкстры.

    контрольная работа, добавлен 11.03.2011

  • Использование метода конечных разностей для решения краевой задачи уравнений с частными производными эллиптического типа. Графическое определение распространения тепла методом конечно-разностных аппроксимаций производных с применением пакета Mathlab.

    курсовая работа, добавлен 06.07.2011

  • Разработка и анализ топологической модели электронной схемы для полного диапазона частот. Определение передаточной схемной функции методом эквивалентных схем в матричной форме, а также методом сигнальных графов, используя сигнальный граф Мэзона.

    контрольная работа, добавлен 11.04.2016

  • Формирование линеаризованного узлового уравнения разработка и транспонированной матрицы, сопротивлений ветвей и узловых проводимостей. Методика и этапы решения системы линеаризованных узловых уравнений методом Зейделя, анализ полученных результатов.

    задача, добавлен 10.08.2013

  • Линейное программирование как наиболее разработанный и широко применяемый раздел математического программирования. Понятие и содержание симплекс-метода, особенности и сферы его применения, порядок и анализ решения линейных уравнений данным методом.

    курсовая работа, добавлен 09.04.2013

  • История возникновения, основные понятия графа и их пояснение на примере. Графический или геометрический способ задания графов, понятие смежности и инцидентности. Элементы графа: висячая и изолированная вершины. Применение графов в повседневной жизни.

    курсовая работа, добавлен 20.12.2015

  • Общая характеристика графов с нестандартными достижимостями, их применение. Особенности задания, представления и разработки алгоритмов решения задач на таких графах. Описание нового класса динамических графов, программной реализации полученных алгоритмов.

    реферат, добавлен 22.11.2010

  • Изучение численно-аналитического метода решения краевых задач математической физики на примере неоднородной задачи Дирихле для уравнения Лапласа. Численная реализация вычислительного метода и вычислительного эксперимента, особенности их оформления.

    практическая работа, добавлен 28.01.2014

  • О происхождении задачи удвоения куба (одной из пяти знаменитых задач древности). Первая известная попытка решения задачи, решение Архита Тарентского. Решение задачи в Древней Греции после Архита. Решения с помощью конических сечений Менехма и Эратосфена.

    реферат, добавлен 13.04.2014

  • Составление математической модели задачи. Приведение ее к стандартной транспортной задаче с балансом запасов и потребностей. Построение начального опорного плана задачи методом минимального элемента, решение методом потенциалов. Анализ результатов.

    задача, добавлен 16.02.2016

  • Основные особенности решения гидродинамических задач методом конформных отображений. Сущность понятия "конформное отображение". Анализ задачи об обтекании твердого тела потоком жидкости. Знакомство с интегрированными функциями комплексного переменного.

    контрольная работа, добавлен 22.03.2013

  • Инварианты. Полуинвариант. Методы решения задач при помощи инвариантов. эквивалентность позиций. Инвариантная функция. Универсальный инвариант. Полная система инвариантов. Четность плюс инвариант. Теория графов, ее применение для решения задач.

    курсовая работа, добавлен 12.11.2008

  • Решения интегральных уравнений на полубесконечном промежутке с ядром, зависящим от разности аргументов с помощью метода Винера-Хопфа. Решение задач в случае бесконечного и полубесконечного промежутка. Применение метода Винера-Хопфа к уравнению Лапласа.

    реферат, добавлен 18.05.2010

  • Метод разделения переменных в задаче Штурма-Лиувилля. Единственность решения смешанной краевой задачи, реализуемая методом априорных оценок. Постановка и решение смешанной краевой задачи для нелокального волнового уравнения с дробной производной.

    курсовая работа, добавлен 29.11.2014

  • Разработка простого метода для решения сложных задач вычислительной и прикладной математики. Построение гибкого сеточного аппарата для решения практических задач. Квазирешетки в прикладных задачах течения жидкости, а также применение полиномов Бернштейна.

    дипломная работа, добавлен 25.06.2011

  • Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.

    контрольная работа, добавлен 28.07.2013

  • Сущность понятия "дифференциальное уравнение". Главные этапы математического моделирования. Задачи, приводящие к решению дифференциальных уравнений. Решение задач поиска. Точность маятниковых часов. Решение задачи на определение закона движения шара.

    курсовая работа, добавлен 06.12.2013

  • Решение систем уравнений по правилу Крамера, матричным способом, с использованием метода Гаусса. Графическое решение задачи линейного программирования. Составление математической модели закрытой транспортной задачи, решение задачи средствами Excel.

    контрольная работа, добавлен 27.08.2009

  • Математическая модель задачи. Решение транспортной задачи методом потенциалов. Значение целевой функции. Система, состоящая из 7 уравнений с 8-ю неизвестными. Решение задач графическим методом. Выделение полуплоскости, соответствующей неравенству.

    контрольная работа, добавлен 12.06.2011

  • Метод замены переменной при решении задач. Тригонометрическая подстановка. Решение уравнений. Решение систем. Доказательство неравенств. Преподавание темы "Применение тригонометрической подстановки для решения алгебраических задач".

    дипломная работа, добавлен 08.08.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.