Свойства и особенности ортогонального проецирования, используемые при разработке графических моделей

Условия отображения формы и размеров геометрического объекта при его моделировании. Виды проецирования, используемые при разработке графических моделей. Свойства ортогонального проецирования, отображение на комплексном чертеже точки, прямой и плоскости.

Подобные документы

  • Что такое симметрия, ее виды в геометрии: центральная (относительно точки), осевая (относительно прямой), зеркальная (относительно плоскости). Проявление симметрии в живой и неживой природе. Применение законов симметрии человеком в науке, быту, жизни.

    реферат, добавлен 14.03.2011

  • Случай движения, при котором все точки пространства перемещаются в одном и том же пространстве и расстоянии. Параллельный перенос на координатной прямой и плоскости в направлении данного вектора на его длину. Построение трапеции параллельным переносом.

    презентация, добавлен 15.02.2012

  • Регулярная кривая и ее отдельные точки. Касательная к кривой и соприкасающаяся плоскость. Эволюта и эвольвента плоской кривой. Кривые на плоскости, заданные уравнением в неявной форме. Примеры точки возврата; понятие асимптоты и полярных координат.

    курсовая работа, добавлен 21.08.2013

  • Структурное преобразование схемы объекта и получение в дифференциальной форме по каналам внешних воздействий. Формы представления вход-выходных математических моделей динамических, звеньев и систем, методов их построения, преобразования и использования.

    курсовая работа, добавлен 09.11.2013

  • Процесс выбора или построения модели для исследования определенных свойств оригинала в определенных условиях. Стадии процесса моделирования. Математические модели и их виды. Адекватность математических моделей. Рассогласование между оригиналом и моделью.

    контрольная работа, добавлен 09.10.2016

  • Общая характеристика примеров нахождения точки пересечения двух прямых. Знакомство с условиями параллельности и перпендикулярности прямых, рассмотрение особенностей решения уравнений. Анализ способов нахождения углового коэффициента искомой прямой.

    презентация, добавлен 21.09.2013

  • Понятие и типы математических моделей, критерии их классификации. Примеры использования дифференциальных уравнений при моделировании реальных процессов: рекламная компания, истечение жидкости, водяные часы, невесомость, прогиб балок, кривая погони.

    курсовая работа, добавлен 27.04.2014

  • Моделирование как метод научного познания, его сущность и содержание, особенности использования при исследовании и проектировании сложных систем, классификация и типы моделей. Математические схемы моделирования систем. Основные соотношения моделей.

    курсовая работа, добавлен 15.10.2013

  • Ортогональное проецирование точки в разные плоскости. Проецирование прямой линии по плоскостям проекций. Плоскость на эпюре Монжа, позиционные и метрические задачи. Многогранники, кривые линии и аксонометрические поверхности, касательные и сечение.

    учебное пособие, добавлен 07.01.2012

  • Определение матричных игр в чистых стратегиях. Смешанные стратегии и их свойства. Решения игр матричным методом. Метод последовательного приближения цены игры. Отыскание седлового элемента. Антагонистические игры как первый класс математических моделей.

    контрольная работа, добавлен 01.06.2014

  • Основные фигуры в пространстве. Геометрические тела: куб, параллелепипед, тетраэдр. Способ задания плоскости. Взаимное расположение прямой и плоскости. Следствия из аксиом стереометрии. Геометрические понятия: вершина, прямая, точка, ребро, грань.

    презентация, добавлен 10.11.2013

  • Метод координат. Основные задачи аналитической геометрии на прямой и на плоскости. Основные линии второго порядка. Алгебраическая и геометрическая интерпретация векторов. Уравнение поверхности и уравнение линии в пространстве. Общее уравнение плоскости.

    учебное пособие, добавлен 04.05.2011

  • Понятие о статистическом графике, его элементы. Незаменимость графических изображений благодаря их выразительности, доходчивости, лаконичности и универсальности. Классификация видов графиков. Виды диаграмм – структурные, динамичные. Статистические карты.

    учебное пособие, добавлен 09.02.2009

  • Определение вписанной и описанной окружности, их свойства и признаки. Взаимное расположение прямой и окружности. Свойства прямоугольного треугольника и теорема Пифагора. Задачи с окружностью, вписанной и описанной в треугольниках и четырехугольниках.

    реферат, добавлен 16.06.2009

  • Понятие аксонометрии как способа изображения предметов на чертеже при помощи параллельных проекций (проекция предмета на плоскости). Наглядность аксонометрических чертежей. Изометрия, диметрия и триметрия. Прямоугольное и косоугольное проецирование.

    презентация, добавлен 01.04.2013

  • Уравнение прямой линии на плоскости, условия перпендикулярности плоскостей. Вычисления для векторов и их значение, нахождение скалярных произведений, обратная матрица к квадратной матрице и вычисление определителя, бесконечные системы и их признаки.

    тест, добавлен 08.03.2012

  • Виды преобразования симметрии фигур. Понятие оси и плоскости симметрии. Одновременное применение преобразований поворота и отражения, зеркально-поворотная ось. Сопряженные элементы, подгруппы и общие свойства и классификация групп операций симметрии.

    реферат, добавлен 25.06.2009

  • Способы формообразования и отображения поверхностей. Закон образования поверхности. Основные свойства, вытекающие из закона образования поверхности вращения. Линейчатые поверхности с плоскостью параллелизма. Образование каркаса циклических поверхностей.

    реферат, добавлен 19.05.2014

  • Подавляющее большинство процессов реального мира носит линейный характер. Область, использования линейных моделей ограничена, в то же время для построения нелинейных моделей хорошо разработан математический аппарат. Методо МНК для линейной функции.

    курс лекций, добавлен 06.03.2009

  • Сущность понятия "фрактал". Сущность фрактальной размерности. Размерность Хаусдорфа и ее свойства. Канторово множество и его обобщение. Снежинка и кривая Коха. Кривая Пеано и Госпера, их особенности. Ковер и салфетка Серпинского. Дракон Хартера-Хейтуэя.

    курсовая работа, добавлен 23.07.2011

  • Приемы построения математических моделей вычислительных систем, отображающих структуру и процессы их функционирования. Число обращений к файлам в процессе решения средней задачи. Определение возможности размещения файлов в накопителях внешней памяти.

    лабораторная работа, добавлен 21.06.2013

  • Исследование самых абстрактных алгебраических систем, в частности, универсальных алгебр. Основные определения, обозначения и используемые результаты. Свойства централизаторов конгруэнции универсальных алгебр. Конгруэнция Фраттини, подалгебра Фраттини.

    курсовая работа, добавлен 22.09.2009

  • Сокращение трудоемкости разработки трехмерных геометрических моделей, требования к квалификации дизайнерской разработки. Внешние переменные модели в эскизах и создание путем присвоения размерам имен переменных. Фиксированный размер и управление моделью.

    презентация, добавлен 12.03.2012

  • Свойства делимости целых чисел в алгебре. Особенности деления с остатком. Основные свойства простых и составных чисел. Признаки делимости на ряд чисел. Понятия и способы вычисления наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК).

    лекция, добавлен 07.05.2013

  • Выпуклые многогранники, теорема Эйлера. Свойства выпуклых многогранников. Определение правильного многогранника. Понятие полуправильных многогранников. Свойства ромбокубооктаэдра, кубооктаэдра, тетраэдра, октаэдра, икосаэдра, додекаэдра и куба.

    методичка, добавлен 30.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.