Графическое отображение объектов и процессов при их проектировании в промышленности и строительстве
Начертательная геометрия - прикладная наука. Комплексный чертеж плоскости. Взаимные пересечения плоскостей, их перпендикулярность и параллельность с прямыми. Сечение поверхности сферы плоскостями. Пересечение поверхностей, аксонометрические проекции.
Подобные документы
- 101. Задача о траекториях
Вычисление траектории на плоскости в случае декартовых координат, ортогональных и изогональных траекторий семейства. Графическое решение дифференциального уравнения первого порядка, построение ортогональных траекторий в задачах картографии, навигации.
курсовая работа, добавлен 25.06.2014 Понятие множества, его трактование Георгом Кантором. Условные обозначения множеств. Виды множеств, способы их задания. Операции над множествами (пересечение, объединение, разность и дополнение), условия их равенства и основные свойства, отношения.
презентация, добавлен 12.12.2012- 103. Живая геометрия
Изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности. Описание геометрических законов и сущность геометрических построений. Графическое образование и его место в современном мире.
дипломная работа, добавлен 24.06.2010 Компьютерное моделирование в базовом курсе информатики. Роль компьютерного моделирования в процессе обучения. Методические рекомендации курса "Математические основы моделирования 3D объектов" базового курса "компьютерное моделирование".
дипломная работа, добавлен 07.07.2003- 105. Призмы
Определение призмы как геометрической фигуры. Свойства призмы, нормальное сечение. Правильная призма – призма, в основании которой лежит правильный многоугольник, а боковые рёбра перпендикулярны основаниям. Диагональное сечение. Элементы призм и ее виды.
презентация, добавлен 19.09.2011 Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.
учебное пособие, добавлен 09.03.2009- 107. Золотое сечение
Определенное отношение длин отрезков. Сооружения, построенные в золотой пропорции. Основы симметрии и ассиметрии. Пропорции мужского тела и золотого сечения. Золотые пропорции в частях тела человека. "Золотое сечение" в математике, архитектуре, живописи.
презентация, добавлен 12.05.2011 Теоремы Паскаля, Брианшона для пятиугольника, четырехугольника, треугольника. Их использование для решения задач конструктивного типа проективной геометрии линий 2-го порядка на расширенной прямой, связанные с построением точек и касательных к ним.
курсовая работа, добавлен 02.06.2013Доказательство теоремы единственности для кривых второго порядка. Преимущества и недостатки разных способов доказательства теоремы единственности. Пучок кривых второго порядка. Методы решения теоремы единственности для поверхностей второго порядка.
курсовая работа, добавлен 22.01.2011- 110. Золотое сечение
Определение золотого сечения и его роль в науке. Присутствие золотого сечения в окружающей жизни. Золотое сечение в расположении листьев на стебле и в пропорциях тела. Деление тела точкой пупа. Числа Фибоначчи, золотая пропорция и тело человека.
реферат, добавлен 09.04.2012 Запись комплексного числа в алгебраической, тригонометрической и показательной формах. Изображение корней уравнения на комплексной плоскости. Умножение и сложение матриц. Вычисление определителя четвертого порядка. Проверка совместимости систем уравнений.
контрольная работа, добавлен 13.12.2012Аппроксимация экспериментальных зависимостей методом наименьших квадратов. Правило Крамера. Графическое отображение точек экспериментальных данных. Аномалии и допустимые значения исходных данных. Листинг программы на С++. Результаты выполнения задания.
курсовая работа, добавлен 03.02.2011Общие аксиомы конструктивной геометрии. Аксиомы математических инструментов. Постановка задачи на построение, методика решения задач. Особенности методик построения: одним циркулем, одной линейкой, двусторонней линейкой, построения с помощью прямого угла.
курс лекций, добавлен 18.12.2009Классификация различных точек поверхности. Омбилические точки поверхности. Строение поверхности вблизи эллиптической, параболической и гиперболической точек. Линии кривизны поверхности и омбилические точки. Поверхность, состоящая из омбилических точек.
дипломная работа, добавлен 24.06.2015Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.
курсовая работа, добавлен 03.01.2008Роль идей и методов проективной геометрии в математической науке. Закономерности кривых второго порядка и кривых второго класса, основные теоремы Паскаля и Брианшона, описывающие замечательное свойство шестиугольника вписанного в кривую второго порядка.
курсовая работа, добавлен 04.11.2013- 117. Высшая математика
Расчет значений комплексных чисел в алгебраической, тригонометрической и показательной формах. Определение расстояния между точками на комплексной плоскости. Решение уравнения на множестве комплексных чисел. Методы Крамера, обратной матрицы и Гаусса.
контрольная работа, добавлен 12.11.2012 - 118. Фигуры вращения
Определение цилиндра (кругового прямого и наклонного), прямого и усечённого конуса, шара и сферы. Основные формулы по расчету геометрических размеров фигур вращения: радиуса, площади боковой и полной поверхности. Объем шара по Архимеду. Уравнение сферы.
презентация, добавлен 18.04.2013 Определение алгебраической линии на плоскости. Теорема о независимости порядка линии от выбора аффиной системы координат. Классификация алгебраической линии. Понятие алгебраической линии на плоскости и окружности как составляющих метода координат.
курсовая работа, добавлен 29.09.2014Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.
курсовая работа, добавлен 24.11.2009Что такое симметрия, ее виды в геометрии: центральная (относительно точки), осевая (относительно прямой), зеркальная (относительно плоскости). Проявление симметрии в живой и неживой природе. Применение законов симметрии человеком в науке, быту, жизни.
реферат, добавлен 14.03.2011- 122. Геометрия
Начальные геометрические сведения и формирования представлений учеников о понятиях точки, прямой, отрезка, треугольника, параллельных прямых, их расположение относительно друг друга. Задачи на вычисление геометрических величин и изображение фигур.
презентация, добавлен 15.09.2010 Линейные операторы, собственные значения. Общее понятие о квадратичных формах. Упрощение уравнений второго порядка на плоскости. Упрощение уравнений фигур в пространстве. Ортогональное преобразование, приводящее квадратичную форму к каноническому виду.
курсовая работа, добавлен 13.11.2012Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.
контрольная работа, добавлен 14.01.2015- 125. Свойства и особенности ортогонального проецирования, используемые при разработке графических моделей
Условия отображения формы и размеров геометрического объекта при его моделировании. Виды проецирования, используемые при разработке графических моделей. Свойства ортогонального проецирования, отображение на комплексном чертеже точки, прямой и плоскости.
реферат, добавлен 01.04.2011