Размерность конечных упорядоченных множеств
Основные понятия размерности упорядоченных множеств. Определение размерности упорядоченного множества. Свойства размерности конечных упорядоченных множеств. Порядковая структура и элементы алгебраической теории решёток.
Подобные документы
Понятия множеств и их элементов, подмножеств и принадлежности. Способы задания множеств, парадокс Рассела. Количество элементов или мощность. Сравнение множеств, их объединение, пересечение, разность и дополнение. Аксиоматическая теория множеств.
курсовая работа, добавлен 07.02.2011Краткое историческое описание становления теории множеств. Теоремы теории множеств и их применение к выявлению структуры различных числовых множеств. Определение основных понятий, таких как мощность, счетные, замкнутые множества, континуальное множество.
дипломная работа, добавлен 30.03.2011Теория частичных действий как естественное продолжение теории полных действий. История создания и перспективы развития теории упорядоченных множеств. Частично упорядоченные множества. Вполне упорядоченные множества. Частичные группоиды и их свойства.
реферат, добавлен 24.12.2007Мономорфные стрелки. Эпиморфные стрелки. Изострелки. КатегориЯ множеств. Мономорфизм в категории множеств. Эпиморфизм в категории множеств. Начальные и конечные объекты в категории множеств. Произведение в категории множеств.
дипломная работа, добавлен 08.08.2007Теория множеств - одна из областей математики. Понятие, обозначение, основные элементы конечных и бесконечных множеств - совокупности или набора определенных и различимых между собой объектов, мыслимых как единое целое. Пустое и универсальное множество.
реферат, добавлен 14.12.2011Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.
курсовая работа, добавлен 07.12.2012Теория графов как раздел дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Основные понятия теории графов. Матрицы смежности и инцидентности и их практическое применение при анализе решений.
реферат, добавлен 13.06.2011Понятие множества, его трактование Георгом Кантором. Условные обозначения множеств. Виды множеств, способы их задания. Операции над множествами (пересечение, объединение, разность и дополнение), условия их равенства и основные свойства, отношения.
презентация, добавлен 12.12.2012Определение понятия множеств Г. Кантора, их примеры и обозначения. Способы задания, включение и равенство множеств, операции над ними: объединение, пересечения, разность, дополнение, их определение и наглядное представление на диаграмме Эйлера-Венна.
реферат, добавлен 11.03.2009Мера ограниченного открытого множества. Мера ограниченного замкнутого множества. Внешняя и внутренняя меры ограниченного множества. Измеримые множества. Измеримость и мера как инварианты движения. Класс измеримых множеств.
курсовая работа, добавлен 28.05.2007Предпосылки развития алгебры множеств. Основы силлогистики и соотношение между множествами. Применение и типы жергонновых отношений. Понятие пустого множества и универсума. Построение диаграмм Эйлера и обоснование законов транзитивности и контрапозиции.
контрольная работа, добавлен 03.09.2010Особенности построения вектора А, удовлетворяющего заданному множеству условий и ограничений, если даны величины упорядоченных множеств. Характеристика алгоритма перебора вектора А и оценка его временной сложности. Анализ графического изображения вектора.
курсовая работа, добавлен 11.03.2010Сущность понятия "фрактал". Сущность фрактальной размерности. Размерность Хаусдорфа и ее свойства. Канторово множество и его обобщение. Снежинка и кривая Коха. Кривая Пеано и Госпера, их особенности. Ковер и салфетка Серпинского. Дракон Хартера-Хейтуэя.
курсовая работа, добавлен 23.07.2011Рассмотрение фрактальной размерности как одной из характеристик инженерной поверхности. Описание природных фракталов. Измерение длины негладкой (изломанной) линии. Подобие и скейлинг, самоподобие и самоаффинность. Соотношение "периметр-площадь".
контрольная работа, добавлен 23.12.2015Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.
лекция, добавлен 25.03.2012Математическая теория нечетких множеств и нечеткая логика как обобщения классической теории множеств и классической формальной логики. Сферы и особенности применения нечетких экспертных систем. Анализ математического аппарата, способы задания функций.
презентация, добавлен 17.04.2013Способы решения логических задач типа "Кто есть кто?" методами графов, табличным способом, сопоставлением трех множеств; тактических, истинностных задач, на нахождение пересечения множеств или их объединения. Буквенные ребусы и примеры со звездочками.
курсовая работа, добавлен 15.06.2010Математическая теория нечетких множеств, история развития. Функции принадлежности нечетких бинарных отношений. Формирование и оценка перспективного роста предприятия оптовой торговли. Порог разделения ассортимента, главные особенности его определения.
контрольная работа, добавлен 08.11.2011- 19. Оценка состояния объекта, подвергающегося воздействию, на основе построений функций принадлежности
Понятие нечеткого множества и свойства его элементов. Определение логических операций: отрицания, конъюнкции, дизъюнкции. Основные этапы нечеткого вывода, метод центра тяжести. Оценка состояния повреждения объекта на основе теории нечетких множеств.
курсовая работа, добавлен 22.07.2011 Алгоритм упорядочивания множества. Определение декартового произведения, его графическая интерпретация. Обратное декартово произведение множеств. Проецирование на оси координат и на координатные плоскости. Область определения и область значений.
лекция, добавлен 18.12.2013- 21. Теория множеств
Определение понятия множества как совокупности некоторых объектов, объединенных по какому-либо признаку. Классификация операций над множествами. Принципы взаимно однозначного соответствия. Нахождение наибольшего общего делителя и наименьшего кратного.
презентация, добавлен 24.09.2011 Определение и основные свойства конечных групп с условием плотности для F-субнормальных подгрупп. Общие свойства, использующиеся для изучения строения конечных групп с плотной системой F-субнормальных подгрупп. Особенности развития теории формаций.
курсовая работа, добавлен 02.03.2010Нечеткая логика как раздел математики, являющийся обобщением классической логики и теории множеств, базирующийся на понятии нечеткого множества. Основные правила и законы данной логики, алгоритм Мамдани. Содержание и принципы решения задачи о парковке.
курсовая работа, добавлен 22.04.2014Группа как непустое множество с бинарной алгебраической операцией, ее свойства и требования. Представления унитарными матрицами и полная приводимость представлений конечных групп. Доказательство основных теорем. Соотношения ортогональности для характеров.
курсовая работа, добавлен 22.09.2009Нечёткие системы логического вывода. Исследование основных понятий теории нечетких множеств. Операции над нечёткими множествами. Нечёткие соответствия и отношения. Описания особенностей логических операций: конъюнкции, дизъюнкции, отрицания и импликации.
презентация, добавлен 29.10.2013