Метод Гаусса-Зейделя
Нахождение XI–неизвестных. Определение количества ITER-итераций. Составление текста программы, ее тестирование. Условия применения итерационного метода. Выбор количества итераций, исследование их зависимости от точности (eps). Получение корней уравнений.
Подобные документы
Составление и программная реализация в среде Borland Delphi 7.0 алгоритмов итерационного и рекурсивного вариантов решения задачи поиска с возвращением. Исследование асимптотической временной сложности решения в зависимости от количества ячеек на плате.
курсовая работа, добавлен 25.06.2013Создание параллельной программы на языке программирования высокого уровня С с расширением MPI и аналогичной программы на OpenMP для решения двумерного уравнения Пуассона итерационным методом Зейделя. Блок-схема алгоритма, анализ работы программы.
контрольная работа, добавлен 06.01.2013Рассмотрение двух способов решения систем линейных алгебраических уравнений: точечные и приближенные. Использование при программировании метода Гаусса с выбором главного элемента в матрице и принципа Зейделя. Применение простой итерации решения уравнения.
курсовая работа, добавлен 05.06.2012Выбор математической модели задачи. Применение численного интегрирования и его методы: прямоугольников, парабол, увеличения точности, Гаусса и Гаусса-Кронрода. Суть математического метода аппроксимации. Интерполяционные методы нахождения значений функции.
курсовая работа, добавлен 08.04.2009Сравнение методов деления отрезка пополам, хорд, касательных и итераций, поочередно используя их для решения одного и того же уравнения. Построение диаграммы и графика изменения числа. Исследование алгоритма работы программы, перечня идентификаторов.
курсовая работа, добавлен 06.08.2013Применение методов минимальных невязок, минимальных поправок, скорейшего спуска, сопряженных градиентов. Алгоритмы и блок-схемы решения. Выбор размерности матрицы системы и требуемой точности. Зависимость количества итераций от размерности матрицы.
курсовая работа, добавлен 21.01.2014Численные методы линейной алгебры. Матричный метод. Методы Крамера и Гаусса. Интерации линейных систем. Интерации Якоби и Гаусса - Зейделя. Листинг программы. Численные методы в электронных таблицах Excel и программе MathCAD, Microsoft Visual Basic
курсовая работа, добавлен 01.06.2008Интерполяция функции с равноотстоящими узлами - прогнозирование в Exel. Составление программы для вычисления значений функции в заданных точках при помощи полинома Ньютона. Решение систем уравнений в Exel методом обратной матрицы и простых итераций.
контрольная работа, добавлен 19.03.2008Метод последовательных приближений. Требования к аппаратным ресурсам и программным средствам разработки. Руководство пользователя, тестовые примеры. Тестирование приложения: ввод вычислений, рисование графика функции. Особенности применения программы.
курсовая работа, добавлен 27.08.2012Решение нелинейных уравнений методом простых итераций и аналитическим, простым и модифицированным методом Ньютона. Программы на языке программирования Паскаль и С для вычислений по вариантам в порядке указанных методов. Изменение параметров задачи.
лабораторная работа, добавлен 24.06.2008Разработка алгоритма составления системы уравнений при помощи законов Кирхгофа по определенной электрической схеме. Приложение для решения данной системы методом Гаусса с выбором ведущего элемента по строке. Описание программы, руководство пользователя.
курсовая работа, добавлен 02.07.2010Изучение дисперсных систем и создание программы, реализующей метод Монте-Карло и моделирующей распределение частиц в определенной области. Исследование методов линейных итераций и вязкой суспензии. Характеристики распределения порошков по размерам.
контрольная работа, добавлен 05.12.2014Определение недостатков итерационного численного способа нахождения корня заданной функции (метод Ньютона). Рассмотрение основ математического и алгоритмического решения поставленной задачи, ее функциональной модели, блок-схемы и программной реализации.
курсовая работа, добавлен 25.01.2010Сравнительный анализ итерационных методов решения нелинейных алгебраических и трансцендентных уравнений. Простейший алгоритм отделения корней нелинейных уравнений. Метод половинного деления. Геометрический смысл метода Ньютона. Метод простой итерации.
реферат, добавлен 06.03.2011Метод Гаусса как прямой метод нахождения решений для систем системы линейных уравнений маленькой и средней размерности с помощью компьютерной техники. Редактор кода и исходный код основной программы в Delphi, блок-схема и графическое решение задачи.
контрольная работа, добавлен 15.06.2015Написание программы для вычисления функции f(x), изображенной на графике, используя оператор if. Построение графика функции. Составление программы, вычисляющей сумму 101 из последовательно расположенных нечетных чисел. Нахождение корней системы уравнений.
контрольная работа, добавлен 07.08.2013Метод аналитического описания экспериментальных данных, основанный на использовании в качестве аппроксимирующих операторов ОДУ. Разработка итерационного МАЧ, в котором предложен критерий качества подстройки неизвестных параметров объектов управления.
дипломная работа, добавлен 14.07.2012Сферы использования компьютеров, сущность и языки программирования. Применение модифицированного метода Гаусса и расширенной матрицы для решения системы линейных алгебраических уравнений (СЛАУ). Разработка программы, системные требования для ее работы.
курсовая работа, добавлен 09.01.2014Поиск коэффициентов кубического уравнения. Расчет количества итераций для заданной погрешности по реккурентному соотношению. Заполнение матрицы по условию. Поиск наибольшего целочисленного элемента массива, не имеющего себе равных в другом массиве.
контрольная работа, добавлен 20.12.2012Автоматизация решения системы уравнения методом Гаусса (классического метода решения системы линейных алгебраических уравнений, остоящего в постепенном понижении порядка системы и исключении неизвестных) и решения уравнения методами хорд и Ньютона.
курсовая работа, добавлен 10.02.2011Разработка программного продукта для решения систем линейных алгебраических уравнений методом Гаусса с помощью ЭВМ. Математическое описание объекта моделирования, начальные и граничные условия. Алгоритм реализации задачи. Использование модуля CRT.
курсовая работа, добавлен 07.01.2016Составление алгоритма и программного обеспечения для реализации конечноразностных интерполяционных формул Ньютона, Гаусса и Стирлинга. Описание метода полиномиальной интерполяции. Изучение метода оптимального исключения для решения линейных уравнений.
курсовая работа, добавлен 25.12.2013Математическое описание и аналитическое исследование методов оптимизации: Нелдера-Мида и градиентный с дроблением шага. Зависимость числа итераций от заданной точности. Решение задачи минимизации для каждого из методов и ее графическая интерпретация.
курсовая работа, добавлен 22.11.2009Системы линейных алгебраических уравнений. Код программы для решения систем линейных алгебраических уравнений. Математические и алгоритмические основы решения задачи методом Гаусса. Программная реализация решения. Алгоритмы запоминания коэффициентов.
лабораторная работа, добавлен 23.09.2014Численные методы решения задач. Решение алгебраических и трансцендентных уравнений. Уточнение корня по методу половинного деления. Решение систем линейных уравнений методом итераций. Методы решения дифференциальных уравнений. Решение транспортной задачи.
курсовая работа, добавлен 16.11.2008