Трансцендентные уравнения с параметрами и методы их решений
Задачи с параметрами и методы их решений. Использование свойств функций, параметра как равноправной переменной, симметрии аналитических выражений, "каркаса" квадратичной функции, теоремы Виета. Трансцендентные уравнения с параметром и методы их решений.
Подобные документы
Выполнение алгебраических преобразований, логическая культура и техника исследования. Основные типы задач с параметрами, нахождение количества решений в зависимости от значения параметра. Основные методы решения задач, методы построения графиков функций.
методичка, добавлен 19.04.2010Линейные уравнения с параметрами. Методы и способы решения систем с неизвестным параметром (подстановка, метод сложения уравнений и графический). Выявление алгоритма действий. Поиск значения параметров, при которых выражение определяет корень уравнения.
контрольная работа, добавлен 17.02.2014Уравнение как равенство, содержащее неизвестное число. Примеры уравнений с одной переменной. Условия обращения уравнения в истинное числовое равенство – его решение (корень). Множество решений уравнения. Уравнение без решения (множество решений пусто).
презентация, добавлен 20.12.2011Понятие иррационального уравнения. Применение формул сокращённого умножения. Посторонние корни и причины их появления. Возведение обеих частей уравнения в одну и ту же степень. Метод замены переменной. Иррациональные уравнения, не имеющие решений.
презентация, добавлен 08.11.2011Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
научная работа, добавлен 18.01.2010Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.
статья, добавлен 29.08.2004Гиперболические уравнения и уравнения смешанного типа. Неограниченная область свойства решений эллиптических уравнений. Вспомогательные леммы и утверждения. Существование резольвенты дифференциального оператора. Применение преобразования Фурье.
реферат, добавлен 30.04.2013Типы уравнений, допускающих понижение порядка. Линейное дифференциальное уравнение высшего порядка. Теоремы о свойствах частичных решений. Определитель Вронского и его применение. Использование формулы Эйлера. Нахождение корней алгебраического уравнения.
презентация, добавлен 29.03.2016Метод аналитического решения (в радикалах) алгебраического уравнения n-ой степени с возвратом к корням исходного уравнения. Собственные значения для нахождения функций от матриц. Устойчивость решений линейных дифференциальных и разностных уравнений.
научная работа, добавлен 05.05.2010Определение понятия уравнения с параметрами. Принцип решения данных уравнений при общих случаях. Решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями. Девять примеров решения уравнений.
реферат, добавлен 09.02.2009Элементарные тригонометрические уравнения и методы их решения. Введение вспомогательного аргумента. Схема решения тригонометрических уравнений. Преобразование и объединение групп общих решений тригонометрических уравнений. Разложение на множители.
курсовая работа, добавлен 21.12.2009Выведены формулы, возможно ранее неизвестные, для решений уравнения Пифагора, Формулы отличаются от общеизвестных формул древних индусов и вавилонян.
статья, добавлен 26.06.2008Появление понятия функций Ляпунова. Развитие теории устойчивости движения. Применение функций Ляпунова к исследованию продолжимости решений дифференциальных уравнений. Методы построения функций Ляпунова, продолжимость решений уравнений третьего порядка.
дипломная работа, добавлен 29.01.2010Методы решения одного нелинейного уравнения: половинного деления, простой итерации, Ньютона, секущих. Код программы решения перечисленных методов на языке программирования Microsoft Visual C++ 6.0. Применение методов к конкретной задаче и анализ решений.
реферат, добавлен 24.11.2009Введение новых динамических систем и их решений, специальных функций эллиптических и тета-функций, зависящих от одного параметра, разложение эллиптических функций Якоби в ряды Фурье (теоремы разложения). Рассмотрение их связи с функцией Вейерштрасса.
курсовая работа, добавлен 26.04.2011Системи лінійних рівнянь з двома змінними з параметром. Тригонометричні рівняння та системи тригонометричних рівнянь з параметрами. Лінійні та квадратні нерівності. Застосування графічних методів паралельного переносу в розв’язанні задач з параметрами.
дипломная работа, добавлен 16.06.2013Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа, добавлен 26.01.2015Поиск оптимальных значений некоторых параметров в процессе решения задачи оптимизации. Сравнение двух альтернативных решений с помощью целевой функции. Теорема Вейерштрасса. Численные методы поиска экстремальных значений функций. Погрешность решения.
презентация, добавлен 18.04.2013Решение уравнения гармонического осциллятора при помощи разложения в ряд Тейлора. Применение метода индуцированной алгебры. Решение уравнения гармонического осциллятора при помощи метода индуцированной алгебры. Сравнение работоспособности методов решений.
курсовая работа, добавлен 24.05.2012Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.
статья, добавлен 17.10.2009Понятие волнового уравнения, описывающего различные виды колебаний. Рассмотрение явной разностной схемы "крест" для решения данной задачи. Нахождение решений на нулевом и первом слоях с помощью начальных условий. Виды и решения интегральных уравнений.
презентация, добавлен 18.04.2013Нахождение экстремумов функций методом множителей Лагранжа. Выражение расширенной целевой функции. Схема алгоритма численного решения задачи методом штрафных функций в сочетании с методом безусловной минимизации. Построение линий ограничений.
курсовая работа, добавлен 04.05.2011Описание колебательных систем дифференциальными уравнениями с малым параметром при производных, асимптотическое поведение их решений. Методика регулярных возмущений и особенности ее применения при решении задачи Коши для дифференциальных уравнений.
курсовая работа, добавлен 15.06.2009Диофант и история диофантовых уравнений. О числе решений линейных диофантовых уравнений (ЛДУ). Нахождение решений для некоторых частных случаев ЛДУ. ЛДУ c одной неизвестной и с двумя неизвестными. Произвольные ЛДУ.
курсовая работа, добавлен 13.06.2007Ф.В. Бессель как немецкий математик и астроном XIX века. Описание уравнения Бесселя, его свойства и функции, характеристика частных случаев. Ортогональность функций Бесселя и их корни. Направления применения теории данных функций к анализу скин-эффекта.
курсовая работа, добавлен 21.08.2012