Задачи и алгоритмы дискретной математики
Потоки в сетях, структура и принципы формирования алгоритма Форда-Фалкерсона, особенности его реализации программным методом. Минимальные остовные деревья. Алгоритм Борувки: понятие и назначение, сферы и специфика практического использования, реализация.
Подобные документы
История слова "алгоритм", понятие, свойства, виды. Алгоритм Евклида, решето Эратосфена; математические алгоритмы при действии с числами и решении уравнений. Требования к алгоритмам: формализация входных данных, память, дискретность, детерминированность.
реферат, добавлен 14.05.2015Нахождение полинома Жегалкина методом неопределенных коэффициентов. Практическое применение жадного алгоритма. Венгерский метод решения задачи коммивояжера. Применение теории нечетких множеств для решения экономических задач в условиях неопределённости.
курсовая работа, добавлен 16.05.2010Основные понятия теории графов. Матричные способы задания графов. Выбор алгоритма Форда–Бэллмана для решения задачи поиска минимальных путей (маршрутов) в любую достижимую вершину нагруженного орграфа. Способы выделения пути с наименьшим числом дуг.
курсовая работа, добавлен 22.01.2016Изучение конкретного раздела дискретной математики. Решение 5-ти задач по изученной теме с методическим описанием. Методика составления и реализация в виде программы алгоритма по изученной теме. Порядок разработки программного интерфейса и руководства.
курсовая работа, добавлен 27.04.2011Эйлеровы цепи и циклы, теоремы. Алгоритм построения эйлерова цикла. Обоснование алгоритма. Нахождение кратчайших путей в графе. Алгоритм Форда отыскания кратчайшего пути. Задача отыскания кратчайших расстояний между всеми парами вершин. Алгоритм Флойда.
реферат, добавлен 01.12.2008Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Алгоритм Литтла для нахождения минимального гамильтонова контура для графа с n вершинами. Решение задачи коммивояжера с помощью алгоритма Крускала и "деревянного" алгоритма.
курсовая работа, добавлен 30.04.2011Способы решения задач дискретной математики. Расчет кратчайшего пути между парами всех вершин в ориентированном и неориентированном графах с помощью использования алгоритма Флойда. Анализ задачи и методов ее решения. Разработка и характеристика программы.
курсовая работа, добавлен 22.01.2014Алгоритм построения минимального остовного дерева. Последовательность выполнения алгоритма Прима, его содержание и назначение. Процедура рисования графа. Порядок составления и тестирования программы, ее интерфейс, реализация и правила эксплуатации.
курсовая работа, добавлен 30.04.2011Постановка задачи коммивояжера и основные алгоритмы решения. Маршруты и пути. Понятия транспортной сети. Понятие увеличивающая дуга, цепь, разрез. Алгоритм Флойда-Уоршелл. Решение задачи аналитическим методом. Создание приложения для решения задачи.
курсовая работа, добавлен 08.10.2015Понятие генетического алгоритма и механизм минимизации функции многих переменных. Построение графика функции и ее оптимизация. Исследование зависимости решения от вида функции отбора родителей для кроссинговера и мутации потомков, анализ результатов.
контрольная работа, добавлен 04.05.2015Нахождение экстремумов функций методом множителей Лагранжа. Выражение расширенной целевой функции. Схема алгоритма численного решения задачи методом штрафных функций в сочетании с методом безусловной минимизации. Построение линий ограничений.
курсовая работа, добавлен 04.05.2011- 12. Методы отсечения
Теоретические основы метода отсечения, его назначение и функции в решении задач целочисленного линейного программирования. Сущность и практическая реализация первого и второго алгоритма Гомори. Применение алгоритма Дальтона, Ллевелина и Данцига.
курсовая работа, добавлен 12.10.2009 Остовное дерево связного неориентированного графа. Алгоритм создания остовного дерева, его нахождение. Сущность и главные особенности алгоритма Крускала. Порядок построения алгоритма Прима, вершина наименьшего веса. Промежуточная структура данных.
презентация, добавлен 16.09.2013Понятие и содержание теории графов. Правила построения сетевых графиков и требования к ним. Сетевое планирование в условиях неопределенности. Теория принятия решений, используемые алгоритмы и основные принципы. Пример применения алгоритма Дейкстры.
курсовая работа, добавлен 26.09.2013Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.
контрольная работа, добавлен 08.06.2010Выбор основного алгоритма решения задачи. Требования к функциональным характеристикам программы. Минимальные требования к составу и параметрам технических средств и к информационной и программной совместимости. Логические модели, блок-схемы алгоритмов.
курсовая работа, добавлен 16.11.2010Вид графов, используемых в теории электрических цепей, химии, вычислительной технике и в информатике. Основные свойства деревьев. Неориентированный граф. Алгоритм построения минимального каркаса. Обоснование алгоритма. Граф с нагруженными ребрами.
реферат, добавлен 11.11.2008Сущность моделирования, его главные цели задачи. Конструктивная схема и общее описание исследуемой трансмиссии. Алгоритм реализации задачи и ее программная реализация. Результаты расчета и их анализ. Исследование характеристик полученной модели.
курсовая работа, добавлен 01.01.2014- 19. Золотое сечение
Понятие и история исследования золотого сечения. Особенности его отражения в математике, природе, архитектуре и живописи. Порядок и принципы построения, структура и сферы практического применения золотого сечения, математическое обоснование и значение.
реферат, добавлен 22.03.2015 Определение связи между выходом и входом для непрерывных систем. Вычисление передаточной функции и основы структурного метода дискретной системы. Расчет передаточной функции дискретной системы с обратной связью. Передаточные функции цифровых алгоритмов.
реферат, добавлен 19.08.2009Формирование нижних и верхних оценок целевой функции. Алгоритм метода ветвей и границ, решение задач с его помощью. Решение задачи коммивояжера методом ветвей и границ. Математическая модель исследуемой задачи, принципы ее формирования и порядок решения.
курсовая работа, добавлен 25.11.2011Вычисление корня функции нелинейного уравнения методом деления отрезка пополам. Способы ввода, вывода и организации данных. Модульная организация программы. Разработка блок-схемы алгоритма задачи. Порядок создания программы на алгоритмическом языке.
реферат, добавлен 28.10.2010Задачи на элементы теории вероятности и математической статистики. Решение систем линейных уравнений методом Крамера; методом Гаусса. Закон распределения дискретной случайной величены. Построение выпуклого многоугольника, заданного системой неравенств.
контрольная работа, добавлен 12.09.2008- 24. Сложность задач
Предмет вычислительной техники - задачи, которые умеют решать машины. Измерение сложности задачи. Алгоритм сортировки слиянием. Полиномиальные и не полиномиальные задачи. Понятие недетерменированного алгоритма. Графическое представление классификации.
презентация, добавлен 22.10.2013 Граф как множество вершин (узлов), соединённых рёбрами, способы и сфера их применения. Специфика теории графов как раздела дискретной математики. Основные способы преобразования графов, их особенности и использование для решения математических задач.
курсовая работа, добавлен 18.01.2013