Древнегреческая математика

Основные этапы развития математики в Древней Греции. Изучение чисел и геометрии в Пифагорейской школе. Вклад Зенона, Демокрита, Платона и Евдокса в становление античной науки. Великий геометр древности Евклид и содержание его главного труда "Начала".

Подобные документы

  • Достижения древнеегипетской математики. Источники, по которым можно судить об уровне знаний древних египтян. Задачи на арифметическую и геометрическую прогрессии, нахождение числа Пи, подчёркивают практический и теоретический характер древней математики.

    реферат, добавлен 14.12.2009

  • Греческая математика и её философия. Взаимосвязь и совместный путь философии и математики от начала эпохи возрождения до конца XVII века. Философия и математика в эпохе Просвещения. Анализ природы математического познания немецкой классической философии.

    дипломная работа, добавлен 07.09.2009

  • Изучение исторического развития математики в Российской Империи в период 18-19 веков как науки о количественных отношениях и пространственных формах действительного мира. Анализ уровня математического образования и его развитие российскими учеными.

    реферат, добавлен 26.01.2012

  • Краткие биографические сведения и характеристика творчества В.Я. Буняковского - знаменитого русского математика. Исследования Буняковского в области теории чисел. Работы по геометрии и прикладным вопросам. Научное наследство великого математика.

    реферат, добавлен 29.05.2010

  • Математика как язык науки. Математический язык описания вечности и пространства. Математика является языком науки в целом, но каждая конкретная наука должна "разговаривать" на собственном (специфическом) диалекте этого языка.

    реферат, добавлен 09.06.2006

  • Исторический процесс развития взглядов на существо математики как науки, основные этапы формирования аксиоматического метода. Теории групп, множеств, отображений и конгруэнтности (равенства) отрезков. Основные аксиоматические теоремы и их доказательства.

    курсовая работа, добавлен 24.05.2009

  • История появления аксиоматического метода. Аксиомы и основные понятия как основания планиметрии, их разновидности. Биография и история сочинений Евклида. Лобачевский как великий русский математик, создатель геометрии, общая характеристика трудов.

    доклад, добавлен 28.03.2010

  • Порядок проведения эксперимента "Иллюзии зрения", его сущность и содержание. Постулаты Евклидовой геометрии. Аксиомы геометрии Лобачевского. Сравнительный анализ двух геометрий, их отличительные и сходные черты, особенности преподнесения, доказательства.

    презентация, добавлен 24.02.2011

  • Математика Древнего и Средневекового Китая. Правило двух ложных положений. Системы линейных уравнений со многими неизвестными. Начальные этапы развития тригонометрии. Создание позиционной десятичной нумерации. Арифметика натуральных чисел и дробей.

    дипломная работа, добавлен 22.12.2012

  • История развития математической науки в Европе VI-XIV вв., ее представители и достижения. Развитие математики эпохи Возрождения. Создание буквенного исчисления, деятельность Франсуа Виета. Усовершенствование вычислений в конце XVI – начале XVI вв.

    презентация, добавлен 20.09.2015

  • Основные понятия аксиоматической теории. Аксиоматический метод – фундаментальнейший метод организации и умножения научного знания в самых разных его областях. Этапы развития аксиоматического метода в науке. Евклидова система обоснования геометрии.

    курсовая работа, добавлен 12.05.2009

  • Ознакомление с жизнью и научной деятельностью древнегреческих ученых Фалеса Милетского, Пифагора, Демокрита и Аристотеля. Рассмотрение вклада в развитие математики Аристотеля и Аполлония Пергского. Научные достижения математика Андрея Петровича Киселева.

    презентация, добавлен 21.11.2011

  • Развитие математики в древнем Китае со II в. до н.э. по VII в.н.э. Древнее математическое "Десятикнижье". Зарождение группового десятичного счёта и мультипликативного принципа фиксирования чисел в эпоху Инь. Классическая "Математика в девяти книгах".

    реферат, добавлен 09.11.2010

  • Содержание и методика преподавания математики в сельской школе. Факультатив, как одна из форм проведения внеклассной работы по геометрии. Факультативные занятия по теме "Решение задач на местности". Задачи на местности для учащихся сельской школы.

    дипломная работа, добавлен 01.12.2007

  • Период зарождения математики (до VII-V вв. до н.э.). Время математики постоянных величин (VII-V вв. до н.э. – XVII в. н.э.). Математика переменных величин (XVII-XIX вв.). Современный период развития математики. Особенности компьютерной математики.

    презентация, добавлен 20.09.2015

  • В первой половине XIX столетия не выработалась преемственная школа русских математиков, но молодая русская математика уже в первый период своего развития дала выдающихся представителей в различных отраслях этой трудной науки.

    доклад, добавлен 06.09.2006

  • Сведения о семье Якоба Бернулли, его тайное увлечение математикой в юности и последующий вклад в развитие теории вероятности. Составление ученым таблицы фигурных чисел и выведение формул для сумм степеней натуральных чисел. Расчет значений чисел Бернулли.

    презентация, добавлен 02.06.2013

  • История возникновения неевклидовой геометрии. Сравнение постулатов параллельности Евклида и Лобачевского. Основные понятия и модели геометрии Лобачевского. Дефект треугольника и многоугольника, абсолютная единица длины. Определение параллельной прямой.

    курсовая работа, добавлен 15.03.2011

  • Как высшая математика разрешает философские парадоксы. Математика в апориях Зенона. Точная математическая формулировка интуитивного физического или метафизического понятия непрерывного движения. Попытки избавления от допущений в математических выкладках.

    реферат, добавлен 05.01.2013

  • Математика как одна из самых древних и консервативных наук. Понятие числа, построение их множеств, особенности натуральных чисел, представление иррациональных чисел. Смысл категории "пространство", последствия применения некорректных методов познания.

    статья, добавлен 28.07.2010

  • Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

    монография, добавлен 28.03.2012

  • Открытие Пифагора в области теории музыки. Что определяет консонанс. Законы пифагорейской музыки. Математическое описание построения музыкальной гаммы. Музыкальный строй. Номер ступени верхнего тона. Интервальные коэффициенты. Приемы дирижирования.

    научная работа, добавлен 09.02.2009

  • Геометрия Евклида как первая естественнонаучная теория. Структура современной математики. Основные черты математического мышления. Аксиоматический метод. Принципы аксиоматического построения научных теорий. Математические доказательства.

    реферат, добавлен 10.05.2011

  • О происхождении задачи удвоения куба (одной из пяти знаменитых задач древности). Первая известная попытка решения задачи, решение Архита Тарентского. Решение задачи в Древней Греции после Архита. Решения с помощью конических сечений Менехма и Эратосфена.

    реферат, добавлен 13.04.2014

  • Исторические факты исследования простых чисел в древности, настоящее состояние проблемы. Распределение простых чисел в натуральном ряде чисел, характер и причина их поведения. Анализ распределения простых чисел-близнецов на основе закона обратной связи.

    статья, добавлен 28.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.