Многошаговые методы решения дифференциальных уравнений
Определение и анализ многошаговых методов, основы их построения, устойчивость и сходимость. Постановка задачи Коши для обыкновенных дифференциальных уравнений. Метод Адамса, значение квадратурных коэффициентов. Применение методов прогноза и коррекции.
Подобные документы
Соотношения между операторами дифференцирования и конечных разностей. Разностная аппроксимация дифференциальных уравнений. Интерполяционные рекуррентные формулы, метод Эйлера. Интерполяция конечными разностями "назад". Рекуррентные формулы Адамса.
реферат, добавлен 08.08.2009- 52. Приближенные методы решения краевых задач, для дифференциальных уравнений с частными производными
Использование метода конечных разностей для решения краевой задачи уравнений с частными производными эллиптического типа. Графическое определение распространения тепла методом конечно-разностных аппроксимаций производных с применением пакета Mathlab.
курсовая работа, добавлен 06.07.2011 - 53. Метод Милна
Численное решение дифференциальных уравнений с помощью многошагового метода прогноза и коррекции Милна. Суммарная ошибка метода Милна. Применение метода Рунге-Кутта для нахождения первых значений начального отрезка. Абсолютная погрешность значения.
контрольная работа, добавлен 27.02.2013 Решение дифференциальных уравнений в частных производных. Метод минимальных невязок, минимальных поправок, скорейшего спуска, сопряженных градиентов. Алгоритмы и блок-схемы решения. Руководство пользователя программы. Решение системы с матрицей.
курсовая работа, добавлен 21.01.2014Анализ методов решения систем нелинейных уравнений. Простая итерация, преобразование Эйткена, метод Ньютона и его модификации, квазиньютоновские и другие итерационные методы решения. Реализация итерационных методов с помощью математического пакета Maple.
курсовая работа, добавлен 22.08.2010Содержание понятия, исследование свойств и применение различных методов решения функциональных уравнений. Порядок решения функциональных уравнений Коши на множестве Q рациональных чисел, на оси R, полуоси R. Измеримые функции и гиперболические косинусы.
дипломная работа, добавлен 01.10.2011Понятия и термины вариационного исчисления. Понятие функционала, его первой вариации. Задачи, приводящие к экстремуму функционала, условия его минимума. Прямые методы вариационного исчисления. Практическое применение метода Ритца для решения задач.
курсовая работа, добавлен 08.04.2015Численное решение уравнения методом Эйлера и Рунге-Кутта в Excel. Программа на языке Turbo Pascal. Блок-схема алгоритма. Метод Рунге-Кутта для дифференциального уравнения второго порядка. Модель типа "хищник-жертва" с учетом внутривидового взаимодействия.
курсовая работа, добавлен 01.03.2012Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.
курсовая работа, добавлен 07.09.2010Поиск собственных чисел и построение фундаментальной системы решений. Исследование зависимости жордановой формы матрицы А от свойств матрицы системы. Построение фундаментальной матрицы решений методом Эйлера, решение задачи Коши и построение графиков.
курсовая работа, добавлен 14.10.2010Биографические сведения об Огюстене Луи Коши - французском математике XIX века, который вошел в историю благодаря открытиям в области дифференциальных уравнений, алгебры, геометрии и математического анализа. Достижения, исследования и открытия ученого.
презентация, добавлен 28.04.2015Методы решения нелинейных уравнений: касательных и хорд, результаты их вычислений. Алгоритм и блок схема метода секущих. Исследование характерных примеров для практического сравнения эффективности рассмотренных методов разрешения нелинейных уравнений.
дипломная работа, добавлен 09.04.2015Параллельные методы решения систем линейных уравнений с ленточными матрицами. Метод "встречной прогонки". Реализация метода циклической редукции. Применение метода Гаусса к системам с пятидиагональной матрицей. Результаты численного эксперимента.
курсовая работа, добавлен 21.10.2013Общая характеристика и особенности двух методов решения обычных дифференциальных уравнений – Эйлера первого порядка точности и Рунге-Кутта четвёртого порядка точности. Листинг программы для решения обычного дифференциального уравнения в Visual Basic.
курсовая работа, добавлен 04.06.2010Понятие и характеристика неопределенного интеграла, его свойства. Методы интегрирования функций: разложение, замена переменной, по частям. Задача Коши, ее содержание. Дисперсия случайной величины. Решения для дифференциальных уравнений n-порядка.
лекция, добавлен 17.12.2010Особенности решения линейных и нелинейных уравнений. Характеристика и практическое применение и различных методов при решении уравнений. Сущность многочлена Лагранжа и обратного интерполирования. Сравнение численного дифференцирования и интегрирования.
курсовая работа, добавлен 20.01.2010Частное решение неоднородных дифференциальных уравнений. Геометрический смысл комплексного числа. Аргумент комплексного числа, его поиск с учетом четверти. Комплексное число в тригонометрической форме, извлечение корня третьей степени, формула Эйлера.
контрольная работа, добавлен 09.09.2009Механическая интерпретация нормальной системы дифференциальных уравнений первого порядка. Свойства решений автономных систем. Предельное поведение траекторий, циклы. Функция последования и направления их исследования, оценка характерных параметров.
курсовая работа, добавлен 24.09.2013Приведение к системе уравнений первого порядка. Разностное представление систем дифференциальных уравнений. Сеточные методы для нестационарных задач. Особенность краевых задач второго порядка. Разностные схемы для уравнений в частных производных.
реферат, добавлен 13.08.2009Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.
контрольная работа, добавлен 28.02.2011Установление прямой зависимости между величинами при изучении явлений природы. Свойства дифференциальных уравнений. Уравнения высших порядков, приводящиеся к квадратурам. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
курсовая работа, добавлен 04.01.2016Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.
контрольная работа, добавлен 09.02.2012Решение систем линейных алгебраических уравнений методом исключения Гаусса. Табулирование и аппроксимация функций. Численное решение обыкновенных дифференциальных уравнений. Приближенное вычисление определенных интегралов. Решение оптимизационных задач.
курсовая работа, добавлен 21.11.2013Геометрическая интерпретация методов Ньютона, итерации и спуска. Определение корня уравнения с заданной степенью точности. Решение систем нелинейных алгебраических уравнений. Нахождение эквивалентного преобразования для выполнения условия сходимости.
курсовая работа, добавлен 14.01.2015Теоретическое обоснование расчетных формул. Задача Коши для дифференциального уравнения первого порядка. Метод Рунге-Кутта. Ломаная Эйлера. Построение схем различного порядка точности. Выбор шага. Апостериорная оценка погрешности. Правило Рунге.
курсовая работа, добавлен 13.11.2011