Теория игр
История развития теории игр как математического метода изучения оптимальных стратегий в играх. Представление игр: экстенсивная и нормальная форма. Классификация и типы математических игр, их характеристика. Общее понятие и основные цели метаигры.
Подобные документы
Значение и применение комбинаторики. Решение и геометрическое представление комбинаторной задачи "очередь в кассу". Применение метода подсчёта ломаных, определение свойства числа сочетаний. Блуждания по бесконечной плоскости в четырёх направлениях.
курсовая работа, добавлен 05.12.2012- 27. Теория графов
Основные понятия теории графов. Расстояния в графах, диаметр, радиус и центр. Применение графов в практической деятельности человека. Определение кратчайших маршрутов. Эйлеровы и гамильтоновы графы. Элементы теории графов на факультативных занятиях.
дипломная работа, добавлен 19.07.2011 Теория графов как раздел дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Основные понятия теории графов. Матрицы смежности и инцидентности и их практическое применение при анализе решений.
реферат, добавлен 13.06.2011История развития тригонометрии, характеристика ее основных понятий и формул. Общие вопросы, цели изучения и способы определения тригонометрических функций числового аргумента в школьном курсе. Рекомендации и методы решения тригонометрических уравнений.
курсовая работа, добавлен 19.10.2011Решение системы уравнений по методу Крамера, Гаусса и с помощью обратной матрицы. Общее число возможных элементарных исходов для заданных испытаний. Расчет математического ожидания, дисперсии и среднего квадратического отклонения, график функции.
контрольная работа, добавлен 23.04.2013Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.
шпаргалка, добавлен 24.12.2010Основные методы формализованного описания и анализа случайных явлений, обработки и анализа результатов физических и численных экспериментов теории вероятности. Основные понятия и аксиомы теории вероятности. Базовые понятия математической статистики.
курс лекций, добавлен 08.04.2011Возникновение и развитие теории групп. Проблема интегрирования дифференциальных уравнений. Алгебраические конструкции в теории автоматов. Появление понятия перестановок. Группы и классификация голограмм. Применение теории групп в квантовой механике.
реферат, добавлен 08.02.2013Теория вероятности как наука убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Математические доказательства теории. Аксиоматика теории вероятности: определения, вероятность пространства, условная вероятность.
лекция, добавлен 02.04.2008- 35. Теория узлов
История возникновения и развития теории узлов. Плоские диаграммы узлов и зацеплений. Характеристика инварианта раскрасок, полинома Конвея и d-диаграммы как основных способов задания узлов. Применение узлов в математике, биологии, физике и химии.
курсовая работа, добавлен 10.06.2014 Переключательные функции одного аргумента. Переключательные функции двух аргументов. Представление переключательной функции в виде многочленов. Совершенная дизъюнктивная нормальная форма переключательной функции. Функция в виде полинома Жегалкина.
реферат, добавлен 27.11.2008Понятие начертательной геометрии, ее сущность и особенности, предмет и методы изучения, история зарождения и развития. Цели и задачи начертательной геометрии, ее структура и элементы. Прямая и варианты ее расположения, разновидности и методы определения
лекция, добавлен 21.02.2009Понятие тригонометрии, ее сущность и особенности, история возникновения и развития. Структура тригонометрии, ее элементы и характеристика. Создание и развитие аналитической теории тригонометрических функций, роль в нем академика Леонарда Эйлера.
творческая работа, добавлен 15.02.2009История возникновения, основные понятия графа и их пояснение на примере. Графический или геометрический способ задания графов, понятие смежности и инцидентности. Элементы графа: висячая и изолированная вершины. Применение графов в повседневной жизни.
курсовая работа, добавлен 20.12.2015Основной вопрос теории сингулярных интегралов. Понятие сингулярного интеграла. Представление функции сингулярным интегралом в заданной точке. Приложения в теории рядов Фурье. Сингулярный интеграл Пуассона.
дипломная работа, добавлен 08.08.2007Понятие и сущность факториала, его обозначение и применение в математических исчислениях. Основные свойства факториалов, история создания и способы представления формулы Стирлинга-Муавра. Научная деятельность Джеймса Стирлинга и Абрахама де Муавра.
презентация, добавлен 23.06.2013История развития и становления математического понятия функции. Абстрактные характеристики упорядоченных алгебр многоместных функций: P-алгебры и D-алгебры. Исследование теории суперпозиций алгебраических структур n-местных функций Менгера и Глускера.
курсовая работа, добавлен 22.12.2015Определение вероятности случайного события; вероятности выиграшных лотерейных билетов; пересечения двух независимых событий; непоражения цели при одном выстреле. Расчет математического ожидания, дисперсии, функции распределения случайной величины.
контрольная работа, добавлен 29.06.2010Понятие математического анализа. Предшественники математического анализа - античный метод исчерпывания и метод неделимых. Л. Эйлер - входит в первую пятерку великих математиков всех времен и народов. Современная пятитомная "Математическая энциклопедия".
реферат, добавлен 04.08.2010Теоретические основы и предмет преподавания математики. Понятие и сущность индукции, дедукции и аналогии. Алгоритмы решения математических задач. Методика введения отрицательных, дробных и действительных чисел. Характеристика алгебраических выражений.
курс лекций, добавлен 30.04.2010Теория частичных действий как естественное продолжение теории полных действий. История создания и перспективы развития теории упорядоченных множеств. Частично упорядоченные множества. Вполне упорядоченные множества. Частичные группоиды и их свойства.
реферат, добавлен 24.12.2007Краткий биографический очерк жизни и деятельности Георга Кантора и Шарля Мерэ. История создания теории действительного числа, ее математическая сущность и характеристика. Определение отношения порядка. Понятие замкнутости множества вещественных чисел.
презентация, добавлен 11.06.2011Аналитическая геометрия. Декартова система координат, линии на плоскости и кривые второго порядка. Поверхности в трехмерном пространстве. Система n линейных уравнений с n неизвестными. Элементы математического анализа. Основные правила комбинаторики.
отчет по практике, добавлен 15.11.2014Классическая теория измерений по поводу истинного значения физической величины, ее главные постулаты. Классификация погрешностей по способу выражения, ее типы: абсолютная, приведенная и относительная. Случайные погрешности, закон их распределения.
реферат, добавлен 06.07.2014Введение понятия переменной величины. Развитие интегральных и дифференциальных методов. Математическое обоснование движения планет. Закон всемирного тяготения Ньютона. Научная школа Лейбница. Теория приливов и отливов. Создание математического анализа.
презентация, добавлен 20.09.2015