Задачи о точках с рациональными координатами

Задачи о пифагоровых треугольниках с целочисленными значениями сторон. Практическое использование задач в геодезии, в атомных и молекулярных структурах и в астрономических расчетах. Число вариантов представления исходного числа в виде двух сомножителей.

Подобные документы

  • Сущность и содержание способа пропорций, определение вида зависимости. Обозначение неизвестного числа в пропорции буквой Х. Запись условий задачи в виде таблицы. Поиск неизвестного члена пропорции. Составление дополнительных пропорций для решения задачи.

    презентация, добавлен 08.02.2010

  • Определение числа e, вычисление его приближенного значения и его трансцендентность. Анализ формул числа е с помощью рядов и пределов функции. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.

    курсовая работа, добавлен 17.05.2021

  • Доказательство гипотезы Гольдбаха-Эйлера. Гипотезы о том, что любое четное число, большее двух, может быть представлено в виде суммы двух простых чисел и любое нечетное число М, большее семи, представимо в виде суммы трех нечетных простых чисел.

    задача, добавлен 07.06.2009

  • Теоретические основы моделирования: понятие модели и моделирования. Моделирование в решении текстовых задач. Задачи на встречное движение двух тел. Задачи на движение двух тел в одном направлении и в противоположных направлениях. Графические изображения.

    курсовая работа, добавлен 03.07.2008

  • Гиперкомплексные числа: общее понятие и основные свойства. Нахождение корней трансцендентного уравнения в комплексных числах на примере уравнения классической задачи теории флаттера в математическом виде. Программная реализация решения в среде Maple.

    контрольная работа, добавлен 28.06.2013

  • Определение вписанной и описанной окружности, их свойства и признаки. Взаимное расположение прямой и окружности. Свойства прямоугольного треугольника и теорема Пифагора. Задачи с окружностью, вписанной и описанной в треугольниках и четырехугольниках.

    реферат, добавлен 16.06.2009

  • Комплексные числа в алгебраической форме. Степень мнимой единицы. Геометрическая интерпретация комплексных чисел. Тригонометрическая форма. Приложение теории комплексных чисел к решению уравнений 3-й и 4-й степени. Комплексные числа и параметры.

    дипломная работа, добавлен 10.12.2008

  • Вписанная и описанная окружности в треугольниках и четырехугольниках, их определение и построение. Теорема Пифагора. Определение площади треугольника, трапеции и параллелограмма. Решение типовых задач по изложенным темам с применением полученных знаний.

    реферат, добавлен 28.05.2009

  • Алгоритма решения диофантовых уравнений. Системный анализ свойств пифагоровых троек. Разработка способов и алгоритмов вычисления пифагоровых троек вида х2=у2+z2. Графические модели, отображающие каждый член пифагоровой тройки в виде составных квадратов.

    статья, добавлен 31.12.2015

  • Система параметров, итерационные формулы, используемые для расчета и анализа пифагоровых троек. Дерево основных пифагоровых треугольников, виды, алгоритм определения. Абиссальные системы диофантовых уравнений; комментарии к десятой проблеме Гильберта.

    контрольная работа, добавлен 07.02.2012

  • Комплексный обзор и систематизация задач математических школьных и районных олимпиад для 8-9 классов. Решение числовых ребусов, уравнений с неизвестными и восстановление цифр натуральных чисел. Логические задачи, стратегии, комбинаторика и тождества.

    курсовая работа, добавлен 30.09.2011

  • Рациональные и иррациональные числа и их свойства. Гипотеза Акулича и явные формулы. Разбиение натурального ряда на две непересекающиеся возрастающие последовательности. Свойства арифметических действий над рациональными и иррациональными числами.

    научная работа, добавлен 05.02.2011

  • Число Пи как математическая константа. Основные особенности вычисления числа Пи. Методы определения численного значения числа Пи. Влияние трудов И. Ньютона и Г. Лейбница на ускорение вычисления приближенных значений Пи. Анализ формул древних ученных.

    курсовая работа, добавлен 26.09.2012

  • Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.

    презентация, добавлен 20.02.2015

  • Краткая биографическая справка из жизни Пифагора. Сущность понятия "пифагоровы тройки", простые способы их формирования. Свойства троек, главные их следствия. Решение задачи на нахождение тангенса острого угла. Подсказки для выбора правильной "тройки".

    презентация, добавлен 01.12.2012

  • Отражение посредством математической функции связи между какими-либо значениями. Представление числовых функций на рисунках в виде графиков. Особенности алгебраической функции и многочленов. Практическое применение линейных и квадратических функций.

    презентация, добавлен 07.10.2014

  • Рассмотрение основных подходов к построению математических моделей процесса. Сопряженное уравнение для простейшего уравнения диффузии и структура алгоритмов для решения задач. Использование принципа двойственности для представления линейного функционала.

    курсовая работа, добавлен 03.08.2012

  • Общая характеристика и обозначение числа пи, его математическое обоснование и исторические периоды исследования: древний, классический. Поэзия цифр данного числа, методика его расчета, а также определение основных факторов, влияющих на его значение.

    реферат, добавлен 10.04.2016

  • Первое доказательство существования иррациональных чисел. Развитие теории пропорций Евдоксом Книдским. Теоремы, корень из 2 - иррациональное число. Трансцендентное число: сущность понятия, свойства, примеры, история. История уточнения числа пи.

    контрольная работа, добавлен 27.11.2011

  • История происхождения числа "пи" - отношения любой окружности к ее диаметру. Письменная история числа "пи", происхождение его обозначения и "погоня" за десятичными знаками. Влияние трудов Архимеда, Уильяма Джонса, Лудольфа ван Цейлена на вычисления "пи".

    презентация, добавлен 22.04.2015

  • Использование системы MathCAD как средства описания алгоритмов решения основных математических задач. Рассмотрение законов Кеплера и понятия о всемирном тяготении. Аналитические и численные решения задачи трех тел (материальных точек), вывод уравнений.

    курсовая работа, добавлен 04.06.2013

  • Письменная история числа "пи", происхождение его обозначения и "погоня" за десятичными знаками. Определение числа "пи" как отношения длины окружности к её диаметру. История числа "е", мнемоника и мнемоническое правило, числа с собственными именами.

    реферат, добавлен 28.11.2010

  • Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.

    курсовая работа, добавлен 25.11.2011

  • Частное решение неоднородных дифференциальных уравнений. Геометрический смысл комплексного числа. Аргумент комплексного числа, его поиск с учетом четверти. Комплексное число в тригонометрической форме, извлечение корня третьей степени, формула Эйлера.

    контрольная работа, добавлен 09.09.2009

  • Теория игр - математическая теория конфликтных ситуаций. Разработка математической модели игры двух лиц с нулевой суммой, ее реализация в виде программных кодов. Метод решения задачи. Входные и выходные данные. Программа, руководство пользователя.

    курсовая работа, добавлен 17.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.