Почти возрастающая функция
Понятие и общая характеристика почти возрастающей функции, ее отличительные признаки и свойства, направления исследования и определяющие критерии. Главные ограничения и требования к изучаемой функции, анализ ее непрерывности и дифференцируемости.
Подобные документы
Свойства бесконечно малых величин. Произведение бесконечно малой величины на ограниченную функцию. Предел функции f(x) при x, стремящимся к бесконечности: теорема и ее доказательство. Пример решения функции и предел отношения двух малых величин.
презентация, добавлен 21.09.2013Функция одной независимой переменной. Основные определения и понятия: число (рациональное, иррациональное), числовая ось, абсолютная величина, функция (основные ее элементы). Графики функций. Пределы, натуральный логарифм. Непрерывность функции.
учебное пособие, добавлен 05.04.2009Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.
курсовая работа, добавлен 25.11.2011Рассмотрение понятия функции комплексного переменного; определение условий ее однозначности и многозначности. Установление функцией w=f(z) зависимости между точками плоскостей Z и W. Пример нахождения образа прямой при заданном отображении функции.
презентация, добавлен 17.09.2013Понятие функции двух и более переменных, ее предел и непрерывность. Частные производные первого и высших порядков. Определение полного дифференциала. Необходимые и достаточные условия существования экстремума и его нахождение на условном множестве.
реферат, добавлен 03.08.2010- 106. Производные функции
Определение производной функции, геометрический смысл ее приращения. Геометрический смысл заданного отношения. Физический смысл производной функции в данной точке. Число, к которому стремится заданное отношение. Анализ примеров вычисления производной.
презентация, добавлен 18.12.2014 Определение функций "бета", "гамма". Эйлеров интеграл первого и второго рода. Связь между функциями "бета" и "гамма". Формула Эйлера, интеграл Раабе. Основные свойства гамма-функции при ее определении. Отличие дифференцирования от интегрирования.
дипломная работа, добавлен 08.10.2011Полухарактеры и характеры. Принцип двойственности Понтрягина. Функциональная характеристика показательной функции. Исследование полугрупп, возникающих в статистических вычислениях. Введение в них инвариантной меры. Операторы Ганкеля и его свойства.
курсовая работа, добавлен 08.01.2013Функция одной независимой переменной. Свойства пределов. Производная и дифференциал функции, их приложение к решению задач. Понятие первообразной. Формула Ньютона-Лейбница. Приближенные методы вычисления определенного интеграла. Теорема о среднем.
конспект урока, добавлен 23.10.2013Определение вертикальной, горизонтальной и наклонной асимптот графиков функций. Точки разрыва и область определения функции. Нахождение конечного предела функции. Неограниченное удаление точек графика от начала координат. Примеры нахождения асимптот.
презентация, добавлен 21.09.2013Первообразная функции и неопределенный интеграл. Геометрический смысл производной. Совокупность всех первообразных для функции f(x) на промежутке Х. Понятие подынтегрального выражения. Проверка правильности результата интегрирования, примеры задач.
презентация, добавлен 18.09.2013- 112. Булевы функции
Понятие, основные свойства элементарных булевых функций и соотношения между ними. Формулировка принципа двойственности. Совершенные дизъюнктивная и конъюнктивная нормальные формы. Многочлен (полином) Жегалкина. Суперпозиция и замыкание класса функций.
презентация, добавлен 05.02.2016 Исследование функции, построение ее графика, используя дифференциальное исчисление. Вычисление неопределенных интегралов, используя методы интегрирования. Пределы функции. Определение области сходимости степенного ряда. Решение дифференциальных уравнений.
контрольная работа, добавлен 06.09.2015Общие свойства функций. Правила дифференциального исчисления. Неопределенный и определенный интегралы, методы их вычисления. Функции нескольких переменных, производные и дифференциалы. Классические методы оптимизации. Модель потребительского выбора.
методичка, добавлен 07.01.2011Методы условной и безусловной нелинейной оптимизации. Исследование функции на безусловный экстремум. Численные методы минимизации функции. Минимизация со смешанными ограничениями. Седловые точки функции Лагранжа. Использование пакетов MS Excel и Matlab.
лабораторная работа, добавлен 06.07.2009- 116. Ряд Фурье
Условия разложения функций для тригонометрического ряда. Определение коэффициентов разложения с помощью ортогональности систем тригонометрических функций. Понятие периодического продолжения функции, заданной на отрезке. Ряд Фурье функции у=f(x).
презентация, добавлен 18.09.2013 Нахождение производных функций. Определение наибольшего и наименьшего значения функции. Область определения функции. Определение интервалов возрастания, убывания и экстремума. Интервалы выпуклости, вогнутости и точки перегиба. Производные второго порядка.
контрольная работа, добавлен 07.02.2015Непрерывность функции: определение, практические примеры, график, приращение. Точка разрыва первого и второго рода функции, примеры. Бесконечность односторонних пределов функции. Практический пример отложения точки разрыва второго рода на графике.
презентация, добавлен 21.09.2013- 119. Исследование функций
Локальные экстремумы функции. Теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа. Достаточные условия экстремума функции. Исследование функций на выпуклость и вогнутость. Точка перегиба. Асимптоты графика функции. Схема построения графика.
курс лекций, добавлен 27.05.2010 - 120. Определение функции
Уравнение стороны треугольника и ее угловой коэффициент. Координаты точки пересечения медиан. Уравнение прямой, проходящей через точки. Область определения функции. Поиск производной и предела функции. Площадь фигуры, ограниченной заданными линиями.
контрольная работа, добавлен 12.05.2012 Введение в математический анализ. Индивидуальные домашние задания по теме "Предел функции и непрерывность» и по теме "Производная". Комбинаторика, бином Ньютона, математическая индукция и комплексные числа. Применение производной при исследовании функции.
учебное пособие, добавлен 25.08.2009Логарифм как многозначная функция. Обозначение главного значения логарифма. Свойства логарифма на случай комплексного аргумента. Понятие обратных тригонометрических функций (арккосинуса, арктангенса, арккотангенса), практические примеры их вычисления.
презентация, добавлен 17.09.2013Рассмотрение эффективности применения методов штрафов, безусловной оптимизации, сопряженных направлений и наискорейшего градиентного спуска для решения задачи поиска экстремума (максимума) функции нескольких переменных при наличии ограничения равенства.
контрольная работа, добавлен 16.08.2010Область определения функции, которая содержит множество возможных значений. Нахождение закона распределения и характеристик функции случайной величины, если известен закон распределения ее аргумента. Примеры определения дискретных случайных величин.
презентация, добавлен 01.11.2013Постановка задачи аппроксимации методом наименьших квадратов, выбор аппроксимирующей функции. Общая методика решения данной задачи. Рекомендации по выбору формы записи систем линейных алгебраических уравнений. Решение систем методом обратной матрицы.
курсовая работа, добавлен 02.06.2011